If \(A=\left[\begin{matrix}1&0\\0&2\end{matrix}\right]\), then \(e^{tA}=\left[\begin{matrix}e^t&0\\0&e^{2t}\end{matrix}\right]\) Now, if \(B=\left[\begin{matrix}0&1\\0&0\end{matrix}\right]\), then \(e^{tB}=\left[\begin{matrix}1&t\\0&1\end{matrix}\right]\) I don't get why t there. Please, help

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

If \(A=\left[\begin{matrix}1&0\\0&2\end{matrix}\right]\), then \(e^{tA}=\left[\begin{matrix}e^t&0\\0&e^{2t}\end{matrix}\right]\) Now, if \(B=\left[\begin{matrix}0&1\\0&0\end{matrix}\right]\), then \(e^{tB}=\left[\begin{matrix}1&t\\0&1\end{matrix}\right]\) I don't get why t there. Please, help

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

@oldrin.bataku
Are you specifically referring to the \[e^{tB}\] matrix?
Yes, sir

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

OK, lemme check. I believe exponentiation of matrices is defined by its infinite series, but let me see if there is a more elegant approach.
OK, I got it. I'll let @oldrin.bataku reply first and see if they have any additional insights.
We first need that \[e^x = 1 + x + x^2/2! + x^3/3! + \cdots \]Are you familiar and/or comfortable with that?
Yes, I do
OK, great. This definition can be extended to matrices so that \[e^{tB} = I + tB + (tB)^2/2! + (tB)^3/3! + \cdots\] In general, \[e^A = \sum_{n=0}^\infty \frac{A^n}{n!}\]
Expanded, we have \[e^{tB} = I + tB + t^2B^2/2! + t^3B^3/3! + \cdots\]
OK, so far?
Yes
Alright, awesome! Now, the annoying thing is the powers of matrices. We really hope that we have a "nice" matrix, otherwise this can get messy. Fortunately, B isn't that bad.
\[B = \left[\begin{matrix}0 & 1 \\ 0 & 0\end{matrix}\right], \ \ B^2 = \left[\begin{matrix}0 & 0 \\ 0 & 0\end{matrix}\right]\]
The zero matrix times any matrix is still the zero matrix, so all powers of B above 1 will be zeroed out.
I know it
Hence, our problem reduces to this: \[e^{tB} = I + tB + 0 + 0 + \cdots = I + tB\] and the result follows immediately.
yyyyyyyyyyyyyes!
\[I + tB = \left[\begin{matrix}1 & 0 \\ 0 & 1\end{matrix}\right] + \left[\begin{matrix}0 & t \\ 0 & 0\end{matrix}\right] = \left[\begin{matrix}1 & t \\ 0 & 1\end{matrix}\right]\]
Yay!! Indeed, any questions?

Not the answer you are looking for?

Search for more explanations.

Ask your own question