Loser66
  • Loser66
If \(A=\left[\begin{matrix}1&0\\0&2\end{matrix}\right]\), then \(e^{tA}=\left[\begin{matrix}e^t&0\\0&e^{2t}\end{matrix}\right]\) Now, if \(B=\left[\begin{matrix}0&1\\0&0\end{matrix}\right]\), then \(e^{tB}=\left[\begin{matrix}1&t\\0&1\end{matrix}\right]\) I don't get why t there. Please, help
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Loser66
  • Loser66
@oldrin.bataku
jtvatsim
  • jtvatsim
Are you specifically referring to the \[e^{tB}\] matrix?
Loser66
  • Loser66
Yes, sir

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

jtvatsim
  • jtvatsim
OK, lemme check. I believe exponentiation of matrices is defined by its infinite series, but let me see if there is a more elegant approach.
jtvatsim
  • jtvatsim
OK, I got it. I'll let @oldrin.bataku reply first and see if they have any additional insights.
jtvatsim
  • jtvatsim
We first need that \[e^x = 1 + x + x^2/2! + x^3/3! + \cdots \]Are you familiar and/or comfortable with that?
Loser66
  • Loser66
Yes, I do
jtvatsim
  • jtvatsim
OK, great. This definition can be extended to matrices so that \[e^{tB} = I + tB + (tB)^2/2! + (tB)^3/3! + \cdots\] In general, \[e^A = \sum_{n=0}^\infty \frac{A^n}{n!}\]
jtvatsim
  • jtvatsim
Expanded, we have \[e^{tB} = I + tB + t^2B^2/2! + t^3B^3/3! + \cdots\]
jtvatsim
  • jtvatsim
OK, so far?
Loser66
  • Loser66
Yes
jtvatsim
  • jtvatsim
Alright, awesome! Now, the annoying thing is the powers of matrices. We really hope that we have a "nice" matrix, otherwise this can get messy. Fortunately, B isn't that bad.
jtvatsim
  • jtvatsim
\[B = \left[\begin{matrix}0 & 1 \\ 0 & 0\end{matrix}\right], \ \ B^2 = \left[\begin{matrix}0 & 0 \\ 0 & 0\end{matrix}\right]\]
jtvatsim
  • jtvatsim
The zero matrix times any matrix is still the zero matrix, so all powers of B above 1 will be zeroed out.
Loser66
  • Loser66
I know it
jtvatsim
  • jtvatsim
Hence, our problem reduces to this: \[e^{tB} = I + tB + 0 + 0 + \cdots = I + tB\] and the result follows immediately.
Loser66
  • Loser66
yyyyyyyyyyyyyes!
jtvatsim
  • jtvatsim
\[I + tB = \left[\begin{matrix}1 & 0 \\ 0 & 1\end{matrix}\right] + \left[\begin{matrix}0 & t \\ 0 & 0\end{matrix}\right] = \left[\begin{matrix}1 & t \\ 0 & 1\end{matrix}\right]\]
jtvatsim
  • jtvatsim
Yay!! Indeed, any questions?
Loser66
  • Loser66

Looking for something else?

Not the answer you are looking for? Search for more explanations.