Factor x^3-5x^2-25x+125

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Factor x^3-5x^2-25x+125

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

5x(x^2-x-5+25)
- no - thats gives 5x^3
x+ 5 or x-5 might be a factor find f(5) and see if it = 0

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

So (x+5)(x-5)(x-5)
What type of roots of those?
we can factor out x^2 between the first two terms, and we can factor out -25x between the third and the fourth term, so we get this: \[\Large {x^3} - 5{x^2} - 25x + 125 = {x^2}\left( {x - 5} \right) - 25x\left( {x - 5} \right)\]
OOOH - did you guess that?? (x-5) is a factor because f(5) = 0
No. I just did (x^2-25)(x-5)
well you are correct
What type of roots are those?
And thanks youu
oops... we can factor out 25 between the third and the fourth terms, not 25 x: \[\Large {x^3} - 5{x^2} - 25x + 125 = {x^2}\left( {x - 5} \right) - 25\left( {x - 5} \right)\]
right
- you beat me too it!!
So would the roots be -5,-5,5 or -5,5,5?
the roots are 5 and -5 root 5 is a duplicate
Ok but since the polynomial is 3 there has to be 3 roots?
- correction - that was rubbish the roots are 5 , 5 and -5
How?
yes -5 and 5 duplicity 2
factors are (x + 5)(x - 5)(x - 5) the fist gives x = -5 and the other 2 give x = 5
Ohhh<3
Thanks! :)
no 3 roots - because there are 2 5's
the graph will look a bit like |dw:1436970554356:dw|
- just touching the point (5,0)
:) Thank you!!
yw

Not the answer you are looking for?

Search for more explanations.

Ask your own question