The expression (secx + tanx)2 is the same as _____.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

The expression (secx + tanx)2 is the same as _____.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[(\sec x + \tan x)^2\] Remember how to expand out a squared expression like this? :)
\[(\frac{ 1 }{ cosx }+\frac{ sinx }{ cosx})^2 ?\]
Before we continue, is there by chance choices?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

yes hold on...
If you're able to get past that first part, here is a hint to help you finish it up. Remember your Pythagorean identity for tangent, \[\sec ^2x=1+\tan ^2x\]
\[A. 1+2\tan^2+2secx tanx\] \[B. 1+2cscx\] \[C. \sec^2x+\tan^2x\] \[D. \sec^2x+2cscx+\tan^2x\]
These are the choices
Well after you expand you would get \[\sec^2(x)+2\sec(x)\tan(x)+\tan^2(x)\]
But remember after you expand everything out, you can replace the sec^2x(that you'll end up with) with 1+tan^2x.
I'm so lost What I have so far is 1+tan(x)+2sec(x)tan(x)+1
Expand the original equation like you would a binomial
except in this case instead of (a+b)^2 A is Sec (x) and B is Tan (x)
look at my previous posts, they are the exact steps on how to do this.
so it's A
yes
thank you

Not the answer you are looking for?

Search for more explanations.

Ask your own question