DominiRican1013
  • DominiRican1013
The expression (secx + tanx)2 is the same as _____.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[(\sec x + \tan x)^2\] Remember how to expand out a squared expression like this? :)
DominiRican1013
  • DominiRican1013
\[(\frac{ 1 }{ cosx }+\frac{ sinx }{ cosx})^2 ?\]
anonymous
  • anonymous
Before we continue, is there by chance choices?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

DominiRican1013
  • DominiRican1013
yes hold on...
anonymous
  • anonymous
If you're able to get past that first part, here is a hint to help you finish it up. Remember your Pythagorean identity for tangent, \[\sec ^2x=1+\tan ^2x\]
DominiRican1013
  • DominiRican1013
\[A. 1+2\tan^2+2secx tanx\] \[B. 1+2cscx\] \[C. \sec^2x+\tan^2x\] \[D. \sec^2x+2cscx+\tan^2x\]
DominiRican1013
  • DominiRican1013
These are the choices
anonymous
  • anonymous
Well after you expand you would get \[\sec^2(x)+2\sec(x)\tan(x)+\tan^2(x)\]
anonymous
  • anonymous
But remember after you expand everything out, you can replace the sec^2x(that you'll end up with) with 1+tan^2x.
DominiRican1013
  • DominiRican1013
I'm so lost What I have so far is 1+tan(x)+2sec(x)tan(x)+1
anonymous
  • anonymous
Expand the original equation like you would a binomial
anonymous
  • anonymous
except in this case instead of (a+b)^2 A is Sec (x) and B is Tan (x)
anonymous
  • anonymous
look at my previous posts, they are the exact steps on how to do this.
DominiRican1013
  • DominiRican1013
so it's A
anonymous
  • anonymous
yes
DominiRican1013
  • DominiRican1013
thank you

Looking for something else?

Not the answer you are looking for? Search for more explanations.