Which function has a vertex at the origin? f(x) = (x + 4)2 f(x) = x(x – 4) f(x) = (x – 4)(x + 4) f(x) = –x2

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Which function has a vertex at the origin? f(x) = (x + 4)2 f(x) = x(x – 4) f(x) = (x – 4)(x + 4) f(x) = –x2

Geometry
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

For any parent function \(\large\color{black}{ \displaystyle y=f(x) }\) (assuming it goes through the origin): -------------------------------------------- \(\large\color{black}{ \displaystyle y=f(x+c) }\) is a shift \(c\) units to the left. -------------------------------------------- \(\large\color{black}{ \displaystyle y=f(x-c) }\) is a shift \(c\) units to the right. -------------------------------------------- \(\large\color{black}{ \displaystyle y=f(x)+c }\) is a shift \(c\) units up. -------------------------------------------- \(\large\color{black}{ \displaystyle y=f(x)-c }\) is a shift \(c\) units down. -------------------------------------------- \(\large\color{black}{ \displaystyle y=c{\tiny}f(x) }\) is stretching (widening) the function when \(01\) (this all is for positive number c)
\(\large\color{black}{ \displaystyle y=c{\tiny}f(x) }\) is called multiplying the function times the scale factor, and if the parent function y=f(x) is already going through the origin, then so would be the y=c•f(x) (regardless of value of c)
One note to make: When c is a scale factor it can't equal zero, because the entire function then is going to be just a line y=0

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

if you got question(s), then please ask.... :)
no questions , btw thanks

Not the answer you are looking for?

Search for more explanations.

Ask your own question