??

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

I got infinity but its looking for a number.
Just to clarify, you're asking to evaluate\[\lim_{x\rightarrow\infty}\frac{e^{8x}-8x-1}{x^2}\]
Yes

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

You're definitely right then...this limit definitely goes to infinity. There are several ways to show this, but easiest way is L'Hopital's Rule.\[\lim_{x\rightarrow\infty}\frac{e^{8x}-8x-1}{x^2}=\lim_{x\rightarrow\infty}\frac{8e^{8x}-8}{2x}=\lim_{x\rightarrow\infty}32e^{8x}=\infty\]
So theres no numerical answer you can get for that?
Because it says a numerical answer is expected.
Nope, this limit doesn't "converge" to any numerical answer. It just grows infinitely. That also makes sense because the function \(e^{8x}\) in the numerator grows WAY faster than \(x^2\) in the denominator, so the limit would never approach a finite number.
Alright thank you so much!!
No problem. :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question