anonymous
  • anonymous
Consider the function defined sequentially by \[f_n(x)= \begin{cases} \dfrac{(-1)^n}{n} & \text{for }x\in\left(\dfrac{1}{n+1},\dfrac{1}{n}\right]\\[1ex] 0 & \text{else} \end{cases}\]where \(n\in\mathbb{N}\). What's the value of \[\int_0^1 f_n(x)\,dx~?\]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ganeshie8
  • ganeshie8
\[\dfrac{(-1)^n}{n^2(n+1)}\] ?
anonymous
  • anonymous
Yep, it reduces nicely into an infinite series. I'm curious to see how one might find the exact value of it.
anonymous
  • anonymous
^without prior knowledge of the polylogarithm. I've seen the answer on W|A.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ganeshie8
  • ganeshie8
I thought the integral evaluates to that expression.. hmm let me go read it again :)
anonymous
  • anonymous
\[\int_0^1f_n(x)\,dx=\sum_{n=1}^\infty\left(\frac{(-1)^n}{n^2}+\frac{(-1)^{n+1}}{n(n+1)}\right)\](you can see this equivalence easily if you plot \(f_n\); rectangles of width \(\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{1}{n(n+1)}\) and height \(\dfrac{(-1)^n}{n}\)) The second term gives a telescoping sum that's easy to deal with if you use the power series for \(-\ln(1+x)\). The first term is trickier.
anonymous
  • anonymous
1 Attachment
anonymous
  • anonymous
\[\int_0^1f_n(x)dx=\sum_{n=1}^{\infty}\frac{(-1)^n}{n^2(n+1)}\]\[=\sum_{n=1}^\infty(\frac{1}{(2n)^2}-\frac{1}{2n}+\frac{1}{2n+1})-\sum_{n=1}^\infty(\frac{1}{(2n-1)^2}-\frac{1}{2n-1}+\frac{1}{2n})\]\[=\frac{\pi^2}{24}+\ln(2)-1-(\frac{\pi^2}{8}-\ln(2))=\ln(4)-\frac{\pi^2}{12}-1\]Not sure if you can follow my thought process, but I THINK I got it haha
anonymous
  • anonymous
Well done! The thought to split into even and odd terms occurred to me a few moments ago. The rest is easy so long as we're familiar with the sum\[\sum_{n=1}^\infty \frac{1}{n^2}=\dfrac{\pi^2}{6}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.