anonymous
  • anonymous
square root of 20.591
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Jadeishere
  • Jadeishere
use a calculator >.< type in 20.951 then the square root number
SolomonZelman
  • SolomonZelman
Lets first do a linear approximation of it. This is \(\large\color{black}{ \displaystyle f(x)=\sqrt{x} }\), and value we are going to use is \(a=25\). In other words, we are drawing a tangent line (at x=25) to this function, and use this line to estimate the value of \(\sqrt{20.951}\). (This process is also known as \(\normalsize \color{blue}{\rm linearization.}\)) \(\large\color{black}{ \displaystyle L(x)=f(a)+f'(a)(x-a) }\) (this is just the tangent line, to a curve f(x), at x=a, in general) ---------------------------------------------------- \(\large\color{black}{ \displaystyle \frac{d}{dx}\sqrt{x} ~=\frac{d}{dx}x^{\LARGE ½}~=\frac{1}{2}x^{{\LARGE ½}-1}~=\frac{1}{2}x^{-\LARGE ½} ~=\frac{1}{2\sqrt{x}} }\) \(\large\color{black}{ \displaystyle f(a)~=\sqrt{a}~=\sqrt{25}=5 }\) \(\large\color{black}{ \displaystyle f'(a)~=\frac{1}{2\sqrt{a}} ~=\frac{1}{2\sqrt{25}}~=\frac{1}{10} }\) ---------------------------------------------------- \(\large\color{black}{ \displaystyle L(x)=5+\frac{1}{10}(x-25) }\) Now, you can use this equation to approximate your square root (for values near x=25) \(\large\color{black}{ \displaystyle L(20.951)=5+\frac{1}{10}(\color{red}{20.951} -25) }\) \(\large\color{black}{ \displaystyle L(20.951)=5+\frac{1}{10}(-4.049) }\) \(\large\color{black}{ \displaystyle L(20.951)=5-0.4049 }\) \(\large\color{black}{ \displaystyle L(20.951)=4.5951 }\)
SolomonZelman
  • SolomonZelman
You can get a beter approximation, by drawing a bigger polynomial .... \(\color{black}{ \displaystyle f(a)+f'(a)(x-a) +\frac{f''(a)}{2!}(x-a)^2+\frac{f'''(a)}{3!}(x-a)^3 ....}\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

SolomonZelman
  • SolomonZelman
Or, this can be written entirely as: \(\color{black}{ \large \displaystyle \sum_{{\rm n=0}}^{\infty}\frac{\left(\displaystyle \frac{d^{\rm n}~f(x)}{dx^{\rm n}}~{\Huge |}_{x=a}\right) }{{\rm n}!}\times (x-a)^{\rm n}}\) More traditionally written as: \(\color{black}{ \large \displaystyle \sum_{{\rm n=0}}^{\infty}\frac{f^{\rm n}(a) }{{\rm n}!}\times (x-a)^{\rm n}}\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.