anonymous
  • anonymous
If g(x) = 2x2 + bx + 5 and g(1) = 4, what is the value of g(-1)? 1 2 3 7 10
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@SolomonZelman
SolomonZelman
  • SolomonZelman
\(\large\color{black}{ \displaystyle g(x)=2x^2+bx+5 }\) correct?
anonymous
  • anonymous
yes sir

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

SolomonZelman
  • SolomonZelman
Your given that \(\large\color{red}{ \color{black}{g(}1\color{black}{)=}\color{blue}{4} }\), so lets apply this. \(\large\color{black}{ \displaystyle g(x)=2x^2+bx+5 }\) for any function g(x)=function with x's. when you do g(1), every single x is replaced by a 1. This gets us: \(\large\color{black}{ \displaystyle g(\color{red}{1})=2(\color{red}{1})^2+b(\color{red}{1})+5 }\)
SolomonZelman
  • SolomonZelman
Now, we know that \(\large\color{red}{ \color{black}{g(}1\color{black}{)=}\color{blue}{4} }\) So, we can substitute 4 instead of g(1), the following way: \(\large\color{black}{ \displaystyle \color{blue}{4}=2(\color{red}{1})^2+b(\color{red}{1})+5 }\)
SolomonZelman
  • SolomonZelman
All you need to do know is to simplify and solve for b:)
anonymous
  • anonymous
i still need help sir solving for b @SolomonZelman
SolomonZelman
  • SolomonZelman
\(\large\color{black}{ \displaystyle \color{blue}{4}=2(\color{red}{1})^2+b(\color{red}{1})+5 }\) ok, what is `2(1)²` equal to?
anonymous
  • anonymous
2?
SolomonZelman
  • SolomonZelman
yes
SolomonZelman
  • SolomonZelman
So lets write that \(\large\color{black}{ \displaystyle \color{blue}{4}=2+b(\color{red}{1})+5 }\)
SolomonZelman
  • SolomonZelman
b(1) is b•1, and that is just b. Right?
anonymous
  • anonymous
yes
SolomonZelman
  • SolomonZelman
\(\large\color{black}{ \displaystyle \color{blue}{4}=2+b+5 }\)
SolomonZelman
  • SolomonZelman
can you solve this, or need a little more help?
anonymous
  • anonymous
i need a little more help please
SolomonZelman
  • SolomonZelman
\(\large\color{black}{ \displaystyle \color{blue}{4}=2+b+5 }\) \(\large\color{black}{ \displaystyle \color{blue}{4}=7+b }\)
SolomonZelman
  • SolomonZelman
agree?
anonymous
  • anonymous
but do we not consider the b to be a imaginary 1 ?
SolomonZelman
  • SolomonZelman
lol, it seems as though you are having a bad day right now...
SolomonZelman
  • SolomonZelman
4=7+b ust subtract 7 from both sides
anonymous
  • anonymous
lol no sir i just want to understand it fully
SolomonZelman
  • SolomonZelman
\(\large\color{black}{ \displaystyle 4=7+b }\) \(\large\color{black}{ \displaystyle 4\color{magenta}{-7}=7+b \color{magenta}{-7} }\) \(\large\color{black}{ \displaystyle 4\color{magenta}{-7}=\cancel{7}+b \cancel{\color{magenta}{-7}} }\)
SolomonZelman
  • SolomonZelman
b=?
anonymous
  • anonymous
3
SolomonZelman
  • SolomonZelman
not exactly, but close...
SolomonZelman
  • SolomonZelman
b can be negative too:)
anonymous
  • anonymous
but my answer choices are not negative
SolomonZelman
  • SolomonZelman
then they are wrong, because the answer is -3.
SolomonZelman
  • SolomonZelman
Oh, we are not done yet....
SolomonZelman
  • SolomonZelman
the answer choices are for g(-1)
SolomonZelman
  • SolomonZelman
and -3 that we found just now is the value of b
anonymous
  • anonymous
yes
SolomonZelman
  • SolomonZelman
Now we know our function entirely. g(x) = 2x² - 3x + 5
SolomonZelman
  • SolomonZelman
And now find g(-1), by plugging -1 instead of x.
SolomonZelman
  • SolomonZelman
g(x) = 2x² - 3x + 5 g(-1) = 2(-1)² - 3(-1) + 5=?
anonymous
  • anonymous
g(-1)=2 -3+5=4
anonymous
  • anonymous
???
anonymous
  • anonymous
or is it 10?
SolomonZelman
  • SolomonZelman
oh wait
anonymous
  • anonymous
i think it is 10 sir
SolomonZelman
  • SolomonZelman
g(-1) = 2(-1)² - 3(-1) + 5 g(-1) = 2 - - 3 + 5 g(-1) = 2 + 3 + 5 g(-1) = 10
SolomonZelman
  • SolomonZelman
correct
anonymous
  • anonymous
thank you so much you are awesome :)
SolomonZelman
  • SolomonZelman
You are welcome!

Looking for something else?

Not the answer you are looking for? Search for more explanations.