A sequence is defined by the formula f(n + 1) = f(n) – 3. If f(4) = 22, what is f(1)?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

A sequence is defined by the formula f(n + 1) = f(n) – 3. If f(4) = 22, what is f(1)?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

the part `f(n+1)=f(n)-3` tells us that the common defference is d=3. Then, we are given that f(4)=22. So this is what we can do: We know a formula for any nth term in arithmetic sequence (this sequence is also arithmetic): \(a_n=a_1+{\rm d}(n-1)\) Now, for 4th term, it would be: \(a_4=a_1+{\rm d}(4-1)\) \(a_4=a_1+3{\rm d}\) Then you know that\(a_4=22\) and d=-3 So, \(22=a_1+3{\rm (-3)}\)
So solve for \(a_1\). (apologize for going from notation of f(n) to \(a_n\), and hope that is ok:) )
It's fine and is the answer 31? I'm going to add this is my notes!

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\(22=a_1+3(-3)\) \(22=a_1-9\) \(31=a_1\) yes, 31 is correct.
I apologize, I had to depart (buying stuff at home depot for fuuture further bath constructions)

Not the answer you are looking for?

Search for more explanations.

Ask your own question