SolomonZelman
  • SolomonZelman
Random....
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

SolomonZelman
  • SolomonZelman
\(\large\color{black}{ \displaystyle y'+\frac{1}{x}y={\rm W} }\) (W is a constant) Of course, it is a linear equation. Integrating factor: \(\large\color{black}{ \displaystyle e^{{\rm H}(x)}= e^{\ln(x)}=x}\) multiplying times this integrating factor: \(\large\color{black}{ \displaystyle y'x+y={\rm W}x }\) \(\large\color{black}{ \displaystyle y'x+y\Longrightarrow \frac{dy}{dx}\left[yx \right] }\) \(\large\color{black}{ \displaystyle \frac{dy}{dx}\left[yx \right]={\rm W}x }\) \(\large\color{black}{ \displaystyle y=({\rm W}/2)x+C/x }\)
SolomonZelman
  • SolomonZelman
nvm
Astrophysics
  • Astrophysics
Haha, had me interested, is this suppose to be a differential equation? :P

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

SolomonZelman
  • SolomonZelman
Was like dah... jk It was random.... (wouldn't envoke a series solution here)

Looking for something else?

Not the answer you are looking for? Search for more explanations.