anonymous
  • anonymous
all lines whose slopes and x intecept equal Ans. y=y'x-y'^2
Differential Equations
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
help
amoodarya
  • amoodarya
what you have tried ?
anonymous
  • anonymous
\[y=mx+b\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
y=bx+b y'=b
anonymous
  • anonymous
subst. y=y'x+y' factor out
anonymous
  • anonymous
y=y'(x+1)
anonymous
  • anonymous
what is the next step ? @amoodarya
ganeshie8
  • ganeshie8
Looks you're wrongly assuming \(b\) is the x intercept
ganeshie8
  • ganeshie8
For a straight line, \(y = mx + b\), the x intercept can be worked by plugging in \(y=0\) : \[0 = mx+b \implies x = -\frac{b}{m}\]
ganeshie8
  • ganeshie8
therefore \(-\frac{b}{m}\) is the x intercept, not \(b\)
ganeshie8
  • ganeshie8
Since you want that equal to the slope, \(-\frac{b}{m}=m \implies b=-m^2\) and the equation of line becomes : \[y = mx-m^2\] plugin \(m=y'\) and you're done!
anonymous
  • anonymous
@ganeshie8 thank you , i did it :)
anonymous
  • anonymous
@ganeshie8 same answer :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.