egbeach
  • egbeach
Eliminate the parameter. x = 4 cos t, y = 4 sin t
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
jtvatsim
  • jtvatsim
For most of these questions the strategy is to solve one equation for t and plug this into the remaining equation, however, that will be very messy for this one. Instead, you will need to be a little clever and use the fact that \[\cos^2 t +\sin^2 t = 1. \] Here's how...
jtvatsim
  • jtvatsim
Notice that \[x = 4\cos t \Rightarrow x^2 = 16\cos^2 t\]
jtvatsim
  • jtvatsim
Also, \[y = 4\sin t \Rightarrow y^2 = 16\sin^2 t \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

jtvatsim
  • jtvatsim
Then, (again being very clever) notice that we can add these new equations together to get \[x^2 + y^2 = 16\cos^2 t + 16 \sin^2 t \] but this is just \[x^2 + y^2 = 16(\cos^2 t + \sin^2 t) = 16(1) = 16 \] There the parameter is gone!
jtvatsim
  • jtvatsim
\[x^2 + y^2 = 16\]
jtvatsim
  • jtvatsim
Any questions? That was a pretty tricky method. @egbeach
egbeach
  • egbeach
Thank you!
jtvatsim
  • jtvatsim
No problem. Good luck!

Looking for something else?

Not the answer you are looking for? Search for more explanations.