anonymous
  • anonymous
What is the simplified form of x minus 5 over x squared minus 3x minus 10 ⋅ x plus 2 over x squared plus x minus 12?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
|dw:1437150497955:dw|
anonymous
  • anonymous
@Michele_Laino
anonymous
  • anonymous
I got 1/(x+3)(x-2) as an answer

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
is your expression like this: \[\frac{{x - 5}}{{{x^2} - 3x - 10}}:\frac{{x + 2}}{{{x^2} + x - 12}}\]
anonymous
  • anonymous
x-5/(x-5)(x+2) timex x+2/(x+4)(x-3)
Michele_Laino
  • Michele_Laino
ok! sorry
Michele_Laino
  • Michele_Laino
we have these steps:
anonymous
  • anonymous
ok
Michele_Laino
  • Michele_Laino
\[\begin{gathered} \frac{{x - 5}}{{{x^2} - 3x - 10}} \cdot \frac{{x + 2}}{{{x^2} + x - 12}} = \hfill \\ \hfill \\ = \frac{{x - 5}}{{\left( {x - 5} \right)\left( {x + 2} \right)}} \cdot \frac{{x + 2}}{{\left( {x - 3} \right)\left( {x + 4} \right)}} = ...? \hfill \\ \end{gathered} \]
anonymous
  • anonymous
Was I wrong?
anonymous
  • anonymous
what's going on? @Michele_Laino
Michele_Laino
  • Michele_Laino
after a simplification I got this: \[\frac{1}{{\left( {x - 3} \right)\left( {x + 4} \right)}}\]
anonymous
  • anonymous
Thanks :) Can I ask another?
Michele_Laino
  • Michele_Laino
ok!
anonymous
  • anonymous
What is the simplified form of the quantity x over 4 plus y over 3 all over the quantity x over 3 minus y over 4?
anonymous
  • anonymous
|dw:1437151350249:dw|
anonymous
  • anonymous
i got 3x+4y/ 4y-3x
Michele_Laino
  • Michele_Laino
do you mean this: \[\frac{{\frac{x}{4} + \frac{y}{3}}}{{\frac{x}{4} - \frac{y}{3}}}\]
Michele_Laino
  • Michele_Laino
\[\Large \frac{{\frac{x}{4} + \frac{y}{3}}}{{\frac{x}{4} - \frac{y}{3}}}\]
anonymous
  • anonymous
no the bottom one is x/3 - y/4
Michele_Laino
  • Michele_Laino
ok! we have to compute the least common multiple at numerator and at denominator, of your main fraction, which is 12, so we get: \[\Large \frac{{\frac{x}{4} + \frac{y}{3}}}{{\frac{x}{3} - \frac{y}{4}}} = \frac{{\frac{{3x + 4y}}{{12}}}}{{\frac{{4x - 3y}}{{12}}}}\]
anonymous
  • anonymous
So we can get rid of the denominator of 12
Michele_Laino
  • Michele_Laino
yes!
anonymous
  • anonymous
:) YAY! Thanks!
Michele_Laino
  • Michele_Laino
:)
anonymous
  • anonymous
Last one?
anonymous
  • anonymous
What is the oblique asymptote of the function f(x) = the quantity x squared minus 5x plus 6 over the quantity x minus 4?
Michele_Laino
  • Michele_Laino
ok! :)
anonymous
  • anonymous
I got x-1 as the oblique asymptote
Michele_Laino
  • Michele_Laino
your function is like this: \[\frac{{\sqrt {{x^2} - 5x + 6} }}{{x - 4}}\]
anonymous
  • anonymous
No. It is without the radical sign
Michele_Laino
  • Michele_Laino
no, sorry, is like this? \[\frac{{{x^2} - 5x + 6}}{{x - 4}}\]
anonymous
  • anonymous
Yup:)
anonymous
  • anonymous
I got x-1.
Michele_Laino
  • Michele_Laino
If I write the asymptote like this: y=mx+q then we have: \[\Large \begin{gathered} m = \mathop {\lim }\limits_{x \to \infty } \frac{{f\left( x \right)}}{x} = \mathop {\lim }\limits_{x \to \infty } \frac{{{x^2} - 5x + 6}}{{x\left( {x - 4} \right)}} = \hfill \\ \hfill \\ = \mathop {\lim }\limits_{x \to \infty } \frac{{{x^2}\left( {1 - \frac{5}{x} + \frac{6}{{{x^2}}}} \right)}}{{{x^2}\left( {1 - \frac{4}{{{x^2}}}} \right)}} = \hfill \\ \end{gathered} \]
anonymous
  • anonymous
Ohh okay:) Kinda confused but I'm getting it
anonymous
  • anonymous
can't you just use synthetic divison?
Michele_Laino
  • Michele_Laino
that limit is 1, so your slope is right!
anonymous
  • anonymous
Thanks:)
anonymous
  • anonymous
I have to go but I need more help. When will you be back?
Michele_Laino
  • Michele_Laino
I stay here for at least 2 hours
anonymous
  • anonymous
Ok:) Thank you. U gtg now!
Michele_Laino
  • Michele_Laino
wait I have to compute the quantity q
Michele_Laino
  • Michele_Laino
oops..please wait...
Michele_Laino
  • Michele_Laino
we have this formula: \[\large \begin{gathered} q = \mathop {\lim }\limits_{x \to \infty } \left\{ {f\left( x \right) - mx} \right\} = \mathop {\lim }\limits_{x \to \infty } \left\{ {f\left( x \right) - x} \right\} = \hfill \\ \hfill \\ = \mathop {\lim }\limits_{x \to \infty } \left\{ {\frac{{{x^2} - 5x + 6}}{{x - 4}} - x} \right\} = \mathop {\lim }\limits_{x \to \infty } \left\{ {\frac{{{x^2} - 5x + 6 - {x^2} + 4x}}{{x - 4}}} \right\} = \hfill \\ \hfill \\ = \mathop {\lim }\limits_{x \to \infty } \left\{ {\frac{{6 - x}}{{x - 4}}} \right\} = \mathop {\lim }\limits_{x \to \infty } \left\{ { - 1 + \frac{2}{{x - 4}}} \right\} = ...? \hfill \\ \end{gathered} \]
Michele_Laino
  • Michele_Laino
that limit is -1, so I confirm your answer, namely the equation of your asymptote is: y=x-1

Looking for something else?

Not the answer you are looking for? Search for more explanations.