anonymous
  • anonymous
y = 5 y = 3x - 4 PLEASE HELP ME WITH 3 QUESTIONS THAT'S ALL JUST 3!!
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Michele_Laino
  • Michele_Laino
here we can write this: \[\Large 3x - 4 = 5\]
anonymous
  • anonymous
Okay
Michele_Laino
  • Michele_Laino
now I add 4 to both sides: \[\Large 3x - 4 + 4 = 5 + 4\] please continue

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
3,9
anonymous
  • anonymous
is 3,9 right or is it wrong what is it , I'm really frustrated so ....
Michele_Laino
  • Michele_Laino
after a simplification, we can write: \[\Large 3x = 9\]
Michele_Laino
  • Michele_Laino
now, please divide by 3, both sides
anonymous
  • anonymous
what sides am I dividing it by
anonymous
  • anonymous
I got 3
Michele_Laino
  • Michele_Laino
hint: |dw:1437154156003:dw|
Michele_Laino
  • Michele_Laino
that's right!
anonymous
  • anonymous
so is it 3,3
Michele_Laino
  • Michele_Laino
it is x=3
anonymous
  • anonymous
I have to write it as an ordered pair
Michele_Laino
  • Michele_Laino
ok! we have: x=3 and y=5, so we can write: (3,5)
anonymous
  • anonymous
Find the solution(s) to the system, if one or more exist. Write your answer as an ordered pair. Round to the nearest hundredth, if necessary. \begin{array}{l}y = {x^2} + 4x - 3\\x = 1\end{array} this is the other one, I have one more I need help on
Michele_Laino
  • Michele_Laino
we have to substitute x=1 into the first equation, so we can write: \[y = {1^2} + 4 \times 1 - 3 = ...?\]
anonymous
  • anonymous
okay
Michele_Laino
  • Michele_Laino
please continue, what is y?
anonymous
  • anonymous
42
anonymous
  • anonymous
that;s what I got for y
Michele_Laino
  • Michele_Laino
hint: \[y = {1^2} + 4 \times 1 - 3 = 1 + 4 - 3 = ...?\]
anonymous
  • anonymous
I got 3, 2
Michele_Laino
  • Michele_Laino
we have: y=2 and x=1 so we can write: (1,2)
anonymous
  • anonymous
is that the answer?
Michele_Laino
  • Michele_Laino
yes!
anonymous
  • anonymous
Explain how to find the solution(s) to the system. Give the solutions(s) as ordered pairs rounded to the nearest hundredth, if necessary. \begin{array}{l}y = - 0.5{x^2} + x + 6\\y = 3.25\end{array} this is the last question I need help on I need help finding the ordered pairs
Michele_Laino
  • Michele_Laino
we have to apply the transitive property, so we can write: \[\Large - 0.5{x^2} + x + 6 = 3.25\]
anonymous
  • anonymous
ok
Michele_Laino
  • Michele_Laino
it is a quadratic equation, since we can rewrite it as follows: \[\Large 0.5{x^2} - x - 2.75 = 0\]
anonymous
  • anonymous
ok
Michele_Laino
  • Michele_Laino
or using fraction instead decimal numbers, we get: \[\Large \frac{{{x^2}}}{2} - x - \frac{{11}}{4} = 0\]
anonymous
  • anonymous
ok
Michele_Laino
  • Michele_Laino
now, I multiply both sides by 4, so I can write: \[\Large \begin{gathered} 4 \times \left( {\frac{{{x^2}}}{2} - x - \frac{{11}}{4}} \right) = 0 \times 4 \hfill \\ 4 \times \frac{{{x^2}}}{2} + 4 \times \left( { - x} \right) + 4 \times \left( { - \frac{{11}}{4}} \right) = 0 \hfill \\ 2{x^2} - 4x - 11 = 0 \hfill \\ \end{gathered} \]
anonymous
  • anonymous
ok
Michele_Laino
  • Michele_Laino
note that equation is an equation like this: \[\Large a{x^2} + bx + c = 0\] where: \[\Large \begin{gathered} a = 2 \hfill \\ b = - 4 \hfill \\ c = - 11 \hfill \\ \end{gathered} \]
anonymous
  • anonymous
okay
Michele_Laino
  • Michele_Laino
so we can apply the standard formula: \[\Large x = \frac{{ - b \pm \sqrt {{b^2} - 4 \times a \times c} }}{{2 \times a}}\]
Michele_Laino
  • Michele_Laino
in order to find the values of x
anonymous
  • anonymous
okay
Michele_Laino
  • Michele_Laino
after a simple substitution, we get: \[\large \begin{gathered} x = \frac{{ - b \pm \sqrt {{b^2} - 4 \times a \times c} }}{{2 \times a}} = \frac{{4 \pm \sqrt {{{\left( { - 4} \right)}^2} - 4 \times 2 \times \left( { - 11} \right)} }}{{2 \times 2}} = \hfill \\ \hfill \\ = \frac{{4 \pm \sqrt {16 + 88} }}{4} \hfill \\ \end{gathered} \] please continue
anonymous
  • anonymous
I got 7
Michele_Laino
  • Michele_Laino
hint: we have 2 values for x: \[\Large \begin{gathered} {x_1} = \frac{{4 + \sqrt {16 + 88} }}{4} = ...? \hfill \\ \hfill \\ {x_2} = \frac{{4 - \sqrt {16 + 88} }}{4} = ...? \hfill \\ \end{gathered} \]
anonymous
  • anonymous
42
Michele_Laino
  • Michele_Laino
hint: \[\begin{gathered} {x_1} = \frac{{4 + \sqrt {16 + 88} }}{4} = \frac{{4 + \sqrt {104} }}{4} = \frac{{4 + 10.2}}{4} = \frac{{14.2}}{4} = ...? \hfill \\ \hfill \\ {x_2} = \frac{{4 - \sqrt {16 + 88} }}{4} = \frac{{4 - \sqrt {104} }}{4} = \frac{{4 - 10.2}}{4} = \frac{{ - 6.2}}{4} = ...? \hfill \\ \end{gathered} \]
anonymous
  • anonymous
14.24 -6.24
Michele_Laino
  • Michele_Laino
you have to divide by 4, namely 14.20/4=...? -6.20/4=...?
anonymous
  • anonymous
3.55 , 1.55
anonymous
  • anonymous
-1.55
Michele_Laino
  • Michele_Laino
we have: x1= 3.55 x2=-1.55
Michele_Laino
  • Michele_Laino
ok!
anonymous
  • anonymous
ok
Michele_Laino
  • Michele_Laino
so the requested pairs, are: (3.55, 3.25) (-1.55, 3.25)
anonymous
  • anonymous
Thank you
anonymous
  • anonymous
i need two that I wanted you to check
Michele_Laino
  • Michele_Laino
ok!
anonymous
  • anonymous
Find the solution(s) to the system, if one or more exist. Write your answer as an ordered pair. \begin{array}{l}y = 3{x^2} + 2x + 4\\x = 4\end{array} I have 156,4 as my answer
Michele_Laino
  • Michele_Laino
substituting x=4 into the first equatiuon, we get: \[y = 3 \times {4^2} + 2 \times 4 + 4 = 3 \times 16 + 8 + 4 = 48 + 12 = 60\]
Michele_Laino
  • Michele_Laino
so the requested pair is: (4, 60)
anonymous
  • anonymous
one of the answer they have is (4,60) and (60 ,4)
anonymous
  • anonymous
thank you
Michele_Laino
  • Michele_Laino
:)
anonymous
  • anonymous
the one with 3,5 wasn't right
anonymous
  • anonymous
right
Michele_Laino
  • Michele_Laino
please what question do you refer to?

Looking for something else?

Not the answer you are looking for? Search for more explanations.