anonymous
  • anonymous
Show that \[[x]+[x+\frac{1}{2}]=[2x]\] where \[[x]\] is the greatest integer of x
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
perl
  • perl
You can consider cases. When x is an integer, when x is not an integer
anonymous
  • anonymous
@perl Would you please help me out
Empty
  • Empty
Here's a way you can solve this that I just came up with so I don't know if there's an easier way. First let's define \(0 \le d<\frac{1}{2}\) Then this means we can reach all numbers as either: \(x=n+d\) or \(x=n+d+\frac{1}{2}\). Why these weird choices? Cause when we plug them in we know no matter what \(d\) is we have: \[[n+d] = n\] \[[n+d+\frac{1}{2}] = n+1\] So we have two separate cases, plugging 'em in to: \[[x]+[x+\frac{1}{2}]=[2x]\] I think that will end up working?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amoodarya
  • amoodarya
"empty' give the answer i give another way you can also take two case below and check both of them \[\lfloor x \rfloor =2n\\ \lfloor x \rfloor=2n+1\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.