anonymous
  • anonymous
How would I do this?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
ganeshie8
  • ganeshie8
sub \(u=2x\)
anonymous
  • anonymous
Hmm... but I don't have the function... Im kind of confused

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ganeshie8
  • ganeshie8
\[\int\limits_0^2 f(2x)\,dx~~\stackrel{u=2x}{=}~~ \frac{1}{2}\int\limits_0^4 f(u)\,du = \frac{1}{2}*20=10\]
anonymous
  • anonymous
Why does the limit of integration change from 4 to 2?
ganeshie8
  • ganeshie8
scratch that, lets work it again from beginning
ganeshie8
  • ganeshie8
you want to evaluate \[\int\limits_0^2f(2x)\, dx\] substitute \(u=2x \implies du=2dx\implies dx=\dfrac{du}{2}\)
ganeshie8
  • ganeshie8
next work the bounds, as \(x\to 0\), what does \(u\to\) ? as \(x\to 2\), what does \(u\to\) ?
anonymous
  • anonymous
1) x -> 0, u -> 0 2) x -> 2, u -> 4
ganeshie8
  • ganeshie8
so upon substitution, bounds change from (0, 2) to (0, 4) and the differential changes from dx to du/2 plug them in
anonymous
  • anonymous
okay, so then that's \[\int\limits_{0}^{4}f(u) \frac{ du }{ 2 }\] and then the 1/2 comes out of the integral
ganeshie8
  • ganeshie8
Yes, next recall that the variable in definite integral is "dummy" \[\int\limits_a^b f(\color{red}{x})\,d\color{red}{x} = \int\limits_a^b f(\color{red}{t})\,d\color{red}{t}=\int\limits_a^b f(\color{red}{\spadesuit})\,d\color{red}{\spadesuit}\]
anonymous
  • anonymous
right
anonymous
  • anonymous
Ohhh now I get what's happening!
anonymous
  • anonymous
@ganeshie8 Thanks so much!

Looking for something else?

Not the answer you are looking for? Search for more explanations.