anonymous
  • anonymous
Jake says that the function is defined at x = –1, x = 3, and x = 4. Yoe says that the function is undefined at those x values. Who is incorrect? Justify your reasoning.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@Michele_Laino
anonymous
  • anonymous
f(x)=(x-1)(x+2)(x+4)/(x+1)(x-2)(x-4)
anonymous
  • anonymous
do you understand the function I wrote or should I draw i?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
from the text of your problem I can write this expression for function f(x): \[\Large f\left( x \right) = \frac{{\left( {x - 1} \right)\left( {x + 2} \right)\left( {x + 4} \right)}}{{\left( {x + 1} \right)\left( {x - 2} \right)\left( {x - 4} \right)}}\]
Michele_Laino
  • Michele_Laino
now we can not divide by zero, so we have to exclude those values of x, such that: \[\Large \begin{gathered} x + 1 = 0 \hfill \\ x - 2 = 0 \hfill \\ x - 4 = 0 \hfill \\ \end{gathered} \] in other words we have to be certain that the denominator is not equal to zero
anonymous
  • anonymous
ok, i see
Michele_Laino
  • Michele_Laino
for example if I solve the first equation, I get: x=-1 so I have to exclude that value
Michele_Laino
  • Michele_Laino
If I solve the second equation, I get: x=2 again, I have to exclude the value x=2
Michele_Laino
  • Michele_Laino
similarly for third equation: x-4=0 which gives: x=4, and i have to exclude that value
anonymous
  • anonymous
ok:) I understand
Michele_Laino
  • Michele_Laino
ok!
anonymous
  • anonymous
So the answer would be? @Michele_Laino
Michele_Laino
  • Michele_Laino
Edward is right!
anonymous
  • anonymous
ok:) Thanks!!!
Michele_Laino
  • Michele_Laino
:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.