A) Convert the following expression to exponential form: log2 128 = k B) Using trial and error, find the correct value of k. Prove that your answer is correct. Ive done this so far A) if y= b^x, then x=logb y Log2 128= k ^Base ^exponent 2^k=128 B) 2^7=128

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

A) Convert the following expression to exponential form: log2 128 = k B) Using trial and error, find the correct value of k. Prove that your answer is correct. Ive done this so far A) if y= b^x, then x=logb y Log2 128= k ^Base ^exponent 2^k=128 B) 2^7=128

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Is a) correct? and how do i do b?
you have the answer already. to convert \[\log_2(128)=k\] into exponential form we need \[b^e=n\] (where b is the base, e is the exponent and n is the number) so base is 2 the number is 128 and the exponent is k \[2^k =128 \] then we figure out what k needs to be to obtain 128 so it's a high exponential number \[2^7 = 128 \] is correct. no trial and error stuff and to prove that just write 2 7 times 2 x 2 x 2 x 2 x 2 x 2 x 2 =128 128=128
thank you :D just didnt really know what "trial and error" really meant or wanted me to do

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

I think it meant to let k be a smaller number and see what happens or something like that but we already found k to be 7, so it wasn't needed.

Not the answer you are looking for?

Search for more explanations.

Ask your own question