anonymous
  • anonymous
cos(5pie/3)= A. root 3/2 B. root 2/2 C. -root 2/2 D. 1/2
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
SolomonZelman
  • SolomonZelman
cos(5π/3) = cos(6π/3 - π/3) = cos(6π - π/3) = cos(2π)cos(π/3) + sin(2π)sin(π/3) = 1 • cos(π/3) + 0 • sin(2π/3) = cos(π/3)
anonymous
  • anonymous
my cos says root 1/2
SolomonZelman
  • SolomonZelman
cos(5π/3) = cos(6π/3 - π/3) = cos(6π - π/3) = cos(2π)cos(π/3) + sin(2π)sin(π/3) = 1 • cos(π/3) + 0 • sin(π/3) = cos(π/3)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
so D?
Michele_Laino
  • Michele_Laino
hint: \[\Large \begin{gathered} \cos \left( {\frac{{5\pi }}{3}} \right) = \cos \left( {\pi + \frac{{2\pi }}{3}} \right) = \hfill \\ \hfill \\ = \cos \pi \cos \left( {\frac{{2\pi }}{3}} \right) - \sin \pi \sin \left( {\frac{{2\pi }}{3}} \right) = ... \hfill \\ \end{gathered} \]
SolomonZelman
  • SolomonZelman
|dw:1437321949506:dw|
anonymous
  • anonymous
is it D?
SolomonZelman
  • SolomonZelman
yes, D is right
Michele_Laino
  • Michele_Laino
hint: \[\begin{gathered} \cos \left( {\frac{{5\pi }}{3}} \right) = \cos \left( {\pi + \frac{{2\pi }}{3}} \right) = \hfill \\ \hfill \\ = \cos \pi \cos \left( {\frac{{2\pi }}{3}} \right) - \sin \pi \sin \left( {\frac{{2\pi }}{3}} \right) = ... \hfill \\ \end{gathered} \]
SolomonZelman
  • SolomonZelman
you can do it as (2π-π/3), it seems easier this way a bit.... (to me at least)
anonymous
  • anonymous
Thank you
SolomonZelman
  • SolomonZelman
yw
SolomonZelman
  • SolomonZelman
and I still had a typo, once agian
SolomonZelman
  • SolomonZelman
cos(5π/3) = cos(6π/3 - π/3) = cos(2π - π/3) ^ I said that was 6π (when it is 2π) = cos(2π)cos(π/3) + sin(2π)sin(π/3) = 1 • cos(π/3) + 0 • sin(2π/3) = cos(π/3)
SolomonZelman
  • SolomonZelman
in any case, if you have questions ask, if not then good luck

Looking for something else?

Not the answer you are looking for? Search for more explanations.