^3√(2^6)^x I know that the answer is 4^x but what are the steps to solve?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

^3√(2^6)^x I know that the answer is 4^x but what are the steps to solve?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\(\LARGE \displaystyle \left(\sqrt[3]{2^6}\right)^x\) like this?
parentheses around only the 2^6
\(\LARGE \displaystyle\sqrt[3]{ \left(2^6\right)^x}\)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

yes like that
well, this is what you can do: \(\LARGE \displaystyle\sqrt[3]{ \left(2^6\right)^x}=\left(\sqrt[3]{ 2^6}\right)^x\)
then, deal with what is inside the parenthesis alone, and if the part inside the parenthesis is a 4, then the expression is 4\(^x\).
more percisely. \(\LARGE \displaystyle\sqrt[3]{ \left(2^6\right)^x}=\) \(\LARGE \displaystyle \left(\sqrt[3]{ 2^6}\right)^x=\) \(\LARGE \displaystyle \left(2^{6/3}\right)^x=\) \(\LARGE \displaystyle \left(2^{2}\right)^x=\) \(\LARGE \displaystyle \left(4\right)^x.\)
if you have a question about the validity of the steps (i.e. what propery did I use for a particular step, or why doing something is valid and works, etc) or other questions as wel...
Ok I understand it now... I just wasn't sure about about what to do with the 6 and the 3 but it makes sense now that I see it. Thank you so much!
Anytime..... But, what I did in the first step is not alwyas valid, although is in this case.
For example, if I say: \(\LARGE \sqrt{x^2}=\left( \sqrt{x} \right)^2\) then I am faulty
Why? because the left side is the absolute value of x (i.e. |x| ) And it is continous for all values of x over the interval (-∞,+∞) And the right side is a line y=x for all values of x, where x≥0 (but undefined for x<0)
But, you can always use the following property: \(\LARGE \sqrt[a]{x^b}=x^{b/a}\)
that is what I used to get from line 2 to line 3

Not the answer you are looking for?

Search for more explanations.

Ask your own question