anonymous
  • anonymous
Rewrite in simplest radical form 1 x −3 6 . Show each step of your process.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
DecentNabeel
  • DecentNabeel
\[\frac{\frac{1}{x}}{6^{-3}}=\frac{216}{x}\]
DecentNabeel
  • DecentNabeel
\[\mathrm{Apply\:exponent\:rule}:\quad \:a^{-b}=\frac{1}{a^b}\] \[6^{-3}=\frac{1}{6^3}\] \[=\frac{\frac{1}{x}}{\frac{1}{6^3}}\] \[\mathrm{Divide\:fractions}:\quad \frac{\frac{a}{b}}{\frac{c}{d}}=\frac{a\cdot \:d}{b\cdot \:c}\] \[=\frac{6^3}{x}\]
DecentNabeel
  • DecentNabeel
are you understand @boots_2000

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
nope
anonymous
  • anonymous
not at all
anonymous
  • anonymous
1 over x raised 3 over 6 thats what the question was supposed to be
Nnesha
  • Nnesha
\[\huge\rm \frac{ 1 }{ x^\frac{ 3 }{ 6 } }\] like this ?
anonymous
  • anonymous
yes
Nnesha
  • Nnesha
alright you can reduce the fraction 3/6 =?
anonymous
  • anonymous
1/2
Nnesha
  • Nnesha
yep right now you can change 1/2 root to radical \[\huge\rm x^\frac{ m }{ n } = \sqrt[n]{x^m}\]
anonymous
  • anonymous
so my answer would be square root x of 1?
Nnesha
  • Nnesha
nope
Nnesha
  • Nnesha
\[\huge\rm x^\frac{ 1 }{ 2}=???\] let m = 1 and n =2 look at the exapmle i gave you
Nnesha
  • Nnesha
example*
Nnesha
  • Nnesha
yesright
Nnesha
  • Nnesha
sorry i didn't see word square so now you are not allowed to have radical at the denominator
DecentNabeel
  • DecentNabeel
\[\frac{1}{x^{\frac{3}{6}}}=\frac{1}{\sqrt{x}}\] \[\mathrm{Simplify}\:\frac{3}{6}:\quad \frac{1}{2}\] =1/x^(1/2) \[=\frac{1}{\sqrt{x}}\]
anonymous
  • anonymous
\[\sqrt[2]{x ^{1}}\]
Nnesha
  • Nnesha
\[\huge\rm \frac{ 1 }{ \sqrt{x}}\] multiply both the denominator and numerator by square root of x
Nnesha
  • Nnesha
don't forget the 1 at the numerator that stay there
Nnesha
  • Nnesha
\[\huge\rm \frac{ 1 }{ \sqrt{x} } \times \frac{ \sqrt{x} }{ \sqrt{x} }\]
anonymous
  • anonymous
\[1\div \sqrt[2]{x ^{1}}\]
anonymous
  • anonymous
like that?
Nnesha
  • Nnesha
yes right now multiply both the top and bottom by the denominator (sqrt{{x}) = answer
anonymous
  • anonymous
\[-\sqrt[2]{x ^{1}}\]
Nnesha
  • Nnesha
nope how did you get negative sign or is it typo ? ;)
anonymous
  • anonymous
typo
Nnesha
  • Nnesha
btw radical sign mean square root so you don't have to write 2 .....
anonymous
  • anonymous
sorry
Nnesha
  • Nnesha
\[\sqrt{ }\] <-- square root
Nnesha
  • Nnesha
\[\huge\rm \frac{ 1 }{ \sqrt{x} } \times \frac{ \sqrt{x} }{ \sqrt{x} }\] multiply denominator by denominator and numerator y numerator
anonymous
  • anonymous
so the answer is without the negative sign???
anonymous
  • anonymous
so its just the suare root of x that we just put but withour the negative???
Nnesha
  • Nnesha
well there isn't any negative sign in the original question so it's pretty obvious :=) o^_^o
Nnesha
  • Nnesha
nope multiply
Nnesha
  • Nnesha
\[\huge\rm \frac{ 1 }{ \sqrt{x} } \times \frac{ \sqrt{x} }{ \sqrt{x} }\] \[\frac{ 1 \times \sqrt{x} }{ \sqrt{x} \times \sqrt{x}}\]
anonymous
  • anonymous
okay well im lost so imma just guess or not answer it
Nnesha
  • Nnesha
as you wish.. just one last step MULTIPLCATION! that's it done!

Looking for something else?

Not the answer you are looking for? Search for more explanations.