zeesbrat3
  • zeesbrat3
Find the x-coordinates of any relative extrema and inflection point(s) for the function f of x equals 9 times x raised to the one third power plus 9 halves times x raised to the four thirds power . You must justify your answer using an analysis of f ′(x) and f ′′(x).
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
zeesbrat3
  • zeesbrat3
\[f(x) = 9x^\frac{ 1 }{ 3 } + \frac{ 9 }{ 2 }x^\frac{ 4 }{ 3 }\]
zeesbrat3
  • zeesbrat3
I have that \[f'(x) = 3x^\frac{ 1 }{ 3 }[x ^{-2} + 2]\]
zeesbrat3
  • zeesbrat3
@ganeshie8

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

zeesbrat3
  • zeesbrat3
So, I set f'(x) = 0 and I got \[x = 0, \pm \frac{ 1 }{ \sqrt{-2} }\]
ganeshie8
  • ganeshie8
http://www.wolframalpha.com/input/?i=%289x%5E%281%2F3%29+%2B+9%2F2*x%5E%284%2F3%29%29%27
zeesbrat3
  • zeesbrat3
I'm confused...
zeesbrat3
  • zeesbrat3
@jim_thompson5910 @amistre64
zeesbrat3
  • zeesbrat3
Hi, Jim_thomspon5910
jim_thompson5910
  • jim_thompson5910
\[\Large f(x) = 9x^{1/3} + \frac{9}{2}x^{4/3}\] \[\Large f \ '(x) = 9(1/3)x^{1/3-1} + \frac{9}{2}*\frac{4}{3}x^{4/3-1}\] \[\Large f \ '(x) = 3x^{-2/3} + 6x^{1/3}\] \[\Large f \ '(x) = 3x^{1/3}\left(x^{-2} + 2\right)\] so I'm getting the same f ' (x) as you did
zeesbrat3
  • zeesbrat3
Then set it to 0, yes?
jim_thompson5910
  • jim_thompson5910
if you set f ' (x) equal to zero, and solve for x, you do get \[\Large x = 0 \text{ or } x = \pm \frac{1}{\sqrt{-2}}\] so I agree there as well
jim_thompson5910
  • jim_thompson5910
The portion \(\Large \pm\frac{1}{\sqrt{-2}}\) aren't real numbers, so we can ignore these two solutions
jim_thompson5910
  • jim_thompson5910
Now either do a first derivative test or a second derivative test to see if a local min or max is at x = 0
zeesbrat3
  • zeesbrat3
The number line check?
jim_thompson5910
  • jim_thompson5910
yeah you can do that for a first derivative test
jim_thompson5910
  • jim_thompson5910
see if f ' (x) changes sign for a value less than 0, and for a value greater than 0
zeesbrat3
  • zeesbrat3
when it is less than 0, it is decreasing, when it is greater than 0, it is increasing
jim_thompson5910
  • jim_thompson5910
correct on both
zeesbrat3
  • zeesbrat3
So 0 is a min
jim_thompson5910
  • jim_thompson5910
when x < 0, f ' (x) < 0 when x > 0, f ' (x) > 0 we have a local min at x = 0 |dw:1437349622635:dw|
jim_thompson5910
  • jim_thompson5910
the min is at x = 0 the actual min value itself is unknown at this point
jim_thompson5910
  • jim_thompson5910
plug x = 0 back into f(x) to find the min value
jim_thompson5910
  • jim_thompson5910
I'm not thinking if x = 0, then f ' (x) is undefined because of the x^(-2) portion. That leads to a division by zero error. So x = 0 cannot be a critical value. The graph of f(x) also shows a vertical tangent at x = 0
zeesbrat3
  • zeesbrat3
Why plug 0 back into f(x)?
ganeshie8
  • ganeshie8
\[\Large f(x) = 9x^{1/3} + \frac{9}{2}x^{4/3}\] \[\Large f \ '(x) = 9(1/3)x^{1/3-1} + \frac{9}{2}*\frac{4}{3}x^{4/3-1}\] \[\Large f \ '(x) = 3x^{-2/3} + 6x^{1/3}\] \[\Large f \ '(x) = 3x^{1/3}\left(x^{-\color{red}{1}} + 2\right)\]
jim_thompson5910
  • jim_thompson5910
oh my bad, I factored incorrectly
zeesbrat3
  • zeesbrat3
So would the second zero be a critical number?
jim_thompson5910
  • jim_thompson5910
x = 0 won't work solve x^(-1) + 2 = 0 for x to get the actual only critical value that will work
zeesbrat3
  • zeesbrat3
So x = -1/2
jim_thompson5910
  • jim_thompson5910
yep, do another first derivative test to see if that is a local min, local max, or neither
zeesbrat3
  • zeesbrat3
Using 0 as well, or not?
jim_thompson5910
  • jim_thompson5910
x = -1/2 is the critical value now
jim_thompson5910
  • jim_thompson5910
you cannot use x = 0 because f ' (x) is undefined when x = 0
zeesbrat3
  • zeesbrat3
Would it be a min again?
jim_thompson5910
  • jim_thompson5910
yes
zeesbrat3
  • zeesbrat3
So, when x = -1/2 there is a local minimum
jim_thompson5910
  • jim_thompson5910
it says `Find the x-coordinates of any relative extrema ` they don't want the y coordinates, so you can stop for this part
jim_thompson5910
  • jim_thompson5910
yeah
zeesbrat3
  • zeesbrat3
Can you help me find the points of inflection please?
jim_thompson5910
  • jim_thompson5910
you'll need to find f '' (x)
jim_thompson5910
  • jim_thompson5910
so differentiate f ' (x)
jim_thompson5910
  • jim_thompson5910
\[\Large f \ '(x) = 3x^{-2/3} + 6x^{1/3}\] will be easier to work with
zeesbrat3
  • zeesbrat3
I got \[f''(x) = \frac{ 2(x-1) }{ x^\frac{ 5 }{ 3 } }\]
jim_thompson5910
  • jim_thompson5910
I'm getting \[\Large f \ '(x) = 3x^{-2/3} + 6x^{1/3}\] \[\Large f \ ''(x) = 3(-2/3)x^{-2/3-1} + 6(1/3)x^{1/3-1}\] \[\Large f \ ''(x) = -2x^{-5/3} + 2x^{-2/3}\]
jim_thompson5910
  • jim_thompson5910
You can factor out -2x^(-5/3) \[\Large f \ ''(x) = -2x^{-5/3} + 2x^{-2/3}\] \[\Large f \ ''(x) = -2x^{-5/3}(1 - x)\]
jim_thompson5910
  • jim_thompson5910
so it looks like we got the same things, just in slightly different forms
zeesbrat3
  • zeesbrat3
Yay!
jim_thompson5910
  • jim_thompson5910
now solve f '' (x) = 0 for x
jim_thompson5910
  • jim_thompson5910
that will give potential x coordinates of the point of inflection
jim_thompson5910
  • jim_thompson5910
to see if they actually are at the inflection point, you need to see if f '' changes sign
zeesbrat3
  • zeesbrat3
So \[0 = 2(x-1)\]
zeesbrat3
  • zeesbrat3
@jim_thompson5910
zeesbrat3
  • zeesbrat3
So x = 1 is the point of inflection?
jim_thompson5910
  • jim_thompson5910
it's at the possible point of inflection
jim_thompson5910
  • jim_thompson5910
set up a number line then see if f '' changes sign for a value to the left of x = 1 and to the right of x = 1
jim_thompson5910
  • jim_thompson5910
don't use x = 0
zeesbrat3
  • zeesbrat3
I used -1 and 2... From decreasing to increasing I got
jim_thompson5910
  • jim_thompson5910
when x = 0.5, f '' (x) = -3.1748 when x = 2, f '' (x) = 0.62996 f '' (x) changes from negative to positive as we move through x = 1 so we definitely have an inflection point at x = 1
zeesbrat3
  • zeesbrat3
xD
jim_thompson5910
  • jim_thompson5910
it turns out x = 0 is also at an inflection point. I'm reading now that if f '' (c) doesn't exist, then x = c could be a possible inflection point (assuming f(c) is defined and f '' changes sign) http://www.sosmath.com/calculus/diff/der15/der15.html since f '' (x) changes in sign going from say x = -0.5 to x = 0.5, this means that another inflection point is at x = 0
zeesbrat3
  • zeesbrat3
Jeez, math is complicated
jim_thompson5910
  • jim_thompson5910
jim_thompson5910
  • jim_thompson5910
1 Attachment
zeesbrat3
  • zeesbrat3
Thank you!
jim_thompson5910
  • jim_thompson5910
no problem

Looking for something else?

Not the answer you are looking for? Search for more explanations.