egbeach
  • egbeach
Determine two pairs of polar coordinates for the point (2, -2) with 0° ≤ θ < 360°.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Mertsj
  • Mertsj
Jim will take over.
jim_thompson5910
  • jim_thompson5910
similar to what Mertsj drew |dw:1437356798358:dw|
jim_thompson5910
  • jim_thompson5910
|dw:1437356851407:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

jim_thompson5910
  • jim_thompson5910
|dw:1437356864345:dw|
jim_thompson5910
  • jim_thompson5910
and that 45 is actually -45 degrees because we're going clockwise instead of counterclockwise
egbeach
  • egbeach
is it (2 square root of 2, 225°), (-2 square root of 2, 45°)
jim_thompson5910
  • jim_thompson5910
|dw:1437357081640:dw|
jim_thompson5910
  • jim_thompson5910
one possible representation is (2*sqrt(2), 315)
jim_thompson5910
  • jim_thompson5910
315 - 180 = 135 degrees |dw:1437357159428:dw| so another possible polar representation is (-2*sqrt(2), 135) the negative r value means you walk backwards 2*sqrt(2) units while facing the 135 degree direction
anonymous
  • anonymous
You can determine by this way: (2, -2) that is x =2, y =-2 hence \(r=\sqrt{2^2+(-2)^2}=2\sqrt2\) \(\theta =arctan(\dfrac{y}{x}) = arctan(-1)\) Hence on the unit circle, \(\theta = 3\pi/4\) or \(\theta =-\pi/4\) |dw:1437357509404:dw|
anonymous
  • anonymous
Therefore, the first pair is \((2\sqrt2, -\pi/4) \)
anonymous
  • anonymous
Moreover, the opposite side of the terminal point will stop at 3pi/4. But to get the point (2,-2) we need negative value of r, hence, the second point will be \((-2\sqrt2, 3\pi/4)\) |dw:1437357640591:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.