anonymous
  • anonymous
A country's population in 1994 was 195 million. In 2002 it was 199 million. Estimate the population in 2016 using exponential growth.
Mathematics
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

campbell_st
  • campbell_st
you need a model like \[A = P \times e^{kt}\] A = the future population, P = initial population, k = growth constant t = time in years so at t = 0 the population P = 195 and t= 8, the population is 199 this can be used to find k, the growth constant \[199 = 195 \times e^{8k}\] solve for k... when you get k use the formula \[A = 195 \times e^{kt}\] using the k value you found and t = 12, which is the time between 1994 and 2012 hope it helps

Looking for something else?

Not the answer you are looking for? Search for more explanations.