• anonymous
Between 7:00 AM and 8:00 AM, trains arrive at a subway station at a rate of 12 trains per hour (0.2 trains per minute). The following formula from statistics can be used to determine the probability that a train will arrive within t minutes of 7:00 AM. F(t)=1-e^-0.2t. Determine how many minutes are needed for the probability to reach 60%. Trying to use formula Y=C^(k*x) Y is the output, C is initial, K is %, and x is time.
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • jamiebookeater
I got my questions answered at in under 10 minutes. Go to now for free help!
  • anonymous
In case someone else gets this: 1-e^-.08t=.6 (.6 is the 60%), then minus 1 from each side, -e^-.08t=-.4 , now divide off the negatives e^-.08t=.4 , now get rid of e with it's inverse of ln to both sides -.08t=ln(.4) , the divide the -.08 to each side and use calculator t= ln(.4)/(-.08) t = approximately 11 minutes. Hopefully someone can use this formula to solve like problems.

Looking for something else?

Not the answer you are looking for? Search for more explanations.