Is this a true statement? Given two non-zero integers a,b. If there exists integer x,y such that ax + by = 1, then gcd(a,b) = 1?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Is this a true statement? Given two non-zero integers a,b. If there exists integer x,y such that ax + by = 1, then gcd(a,b) = 1?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

I believe it's true. But not sure. So here is my attempt. Suppose not, that gcd(a,b) = c, for some positive integer c > 1. Then by definition, c | a and c|b. I.e cm = a and cn = b for some integer m,n. Substitute we have: cmx + cny = 1 c (mx + ny) = 1. This implies c | 1. But c > 1. Hence this is a contradiction. The only value that divide 1 is 1. So c = 1 Right?
Yeah, I think this is used for Euclid algorithm
I believe that is the converse (with more assumptions) of Bézout's identity

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

the converse of Bézout's identity is not true in general. But if we restrict a,b to be non-zero, then it's true. (provided that the proof above is correct)
I never had any confidence in the validity of my proof. Which is why I asked this question to see if any one agrees.
it's true, this is a special case of Bezout's identity
any integer combination of \(x,y\) must be a multiple of \(\gcd(x,y)\), so if you have a combination \(ax+by=1\) it follows that \(\gcd(x,y)\,|\, 1\) so \(\gcd(x,y)=1\)
@oldrin.bataku awesome! thank you :D
consider that if \(\gcd(x,y)=z\) then \(x=mz,y=nz\) so it follows that \(amz+bnz=z(am+bn)=1\) so \(z\,|\, 1\implies z=1\) since we restrict \(z\gt0\)

Not the answer you are looking for?

Search for more explanations.

Ask your own question