Abhisar
  • Abhisar
Prove that length of the chord P1P2 is 2RCos \(\theta\)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Abhisar
  • Abhisar
|dw:1437466437909:dw|
welshfella
  • welshfella
|dw:1437471838416:dw|
welshfella
  • welshfella
By the Cosine Rule r^2 =r^2 +p1p2 ^2 - 2r(p1p2)cos theta solve for p1p2

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

welshfella
  • welshfella
p1p2 ^2 - 2r(p1p2)cos theta r^2 - r^2 = 0 p1p2(p1p2 - 2r cos theta) = 0 (p1p2 - 2r cos theta) = 0 or pip2 = 0 p1p2 = 2r cos theta
welshfella
  • welshfella
* correction to first line:- p1p2 ^2 - 2r(p1p2)cos theta = r^2 - r^2 = 0
Loser66
  • Loser66
|dw:1437481488578:dw|
Loser66
  • Loser66
O is middle point of \(P_1P_2\), and \(P_1C= R\) Hence \(CO\perp P_1P_2\), that gives us \(cos (\theta)=\dfrac{P_1O}{R}\rightarrow 2P_1O=P_1P_2= 2Rcos(\theta)\)
Abhisar
  • Abhisar
Thank you very much @welshfella and @loser66
Loser66
  • Loser66
@Astrophysics Make question here, please.
Astrophysics
  • Astrophysics
Everything checks out, I had a similar method, but yours is quicker, nice job! :P

Looking for something else?

Not the answer you are looking for? Search for more explanations.