rvc
  • rvc
The acceleration of the train starting from the rest is a= 8/(v^2+1). Find a. v=? when x= 20m b. x=? when v=64.8km/hr
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Michele_Laino
  • Michele_Laino
question a) the velocity is given by the subsequent formula: \[\Large v = at\]
rvc
  • rvc
is it the differential equation?
Michele_Laino
  • Michele_Laino
please wait

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
yes! I think that we have to write a differential equation
rvc
  • rvc
yes but im confused which to use
Michele_Laino
  • Michele_Laino
by definition of acceleration, we can write this: \[\Large a = \frac{{dv}}{{dt}} = \frac{8}{{{v^2} + 1}}\]
rvc
  • rvc
brb
Michele_Laino
  • Michele_Laino
the space x(t) traveled is given by this differential equation: \[\Large \frac{{dx}}{{dt}} = v\left( t \right)\]
Michele_Laino
  • Michele_Laino
we have to integrate that ODE, so we have: \[\Large x\left( t \right) = \int {v\left( t \right)dt} \] then we have to know the shape of the function: \[\Large v = v\left( t \right)\]
rvc
  • rvc
the question doesn't tell us about the shape
Michele_Laino
  • Michele_Laino
yes I know, we have to compute it, nevertheless it is not simple, since after a simple integration, we get: \[\Large \frac{{{v^3}}}{3} + v = 8t\] as you can easily check
Michele_Laino
  • Michele_Laino
sincerely I don't know how to overcome this difficulty
rvc
  • rvc
we don't have t in the equation
Michele_Laino
  • Michele_Laino
please wait I ask to another helper
Michele_Laino
  • Michele_Laino
@mathstudent55 please help
Michele_Laino
  • Michele_Laino
@e.mccormick please help
rvc
  • rvc
I think we have these formulas: \[\Large \rm a=v \frac{ dv }{ dx }\] \[\Large \rm v=\frac{ dx }{ dt }\] \[\Large \rm a=\frac{ dv }{ dt }\]
Michele_Laino
  • Michele_Laino
yes! nice idea!
Haseeb96
  • Haseeb96
it is very easy I think @Michele_Laino can figure out your this problem. I have to go on my roof. Because there is some huge storm coming.
Michele_Laino
  • Michele_Laino
we have: \[\Large \frac{{dx}}{{dv}} = \frac{v}{a} = \frac{{v\left( {{v^2} + 1} \right)}}{8}\]
rvc
  • rvc
Okay @Haseeb96 Thanks bro :)
Michele_Laino
  • Michele_Laino
thanks @Haseeb96 actually @rvc helped me with her nice idea
Michele_Laino
  • Michele_Laino
ok! we have only to integrate that last ODE, so we can write this: \[\Large x\left( v \right) = \frac{1}{8}\left( {\frac{{{v^4}}}{4} + \frac{{{v^2}}}{2}} \right)\]
rvc
  • rvc
wait how dx/dv? can we write like that way?
Michele_Laino
  • Michele_Laino
since: \[\Large \frac{{dx}}{{dv}} = \frac{1}{{\frac{{dv}}{{dx}}}}\]
rvc
  • rvc
oh okay
Michele_Laino
  • Michele_Laino
after a substitution, we gave to solve a qudratic equation for v^2
Michele_Laino
  • Michele_Laino
we have*
Michele_Laino
  • Michele_Laino
for part b) we can use the same formula: \[\Large x\left( v \right) = \frac{1}{8}\left( {\frac{{{v^4}}}{4} + \frac{{{v^2}}}{2}} \right)\]
Michele_Laino
  • Michele_Laino
since the motion is the same. We have only to substitute v=64.8 at the right side
rvc
  • rvc
and the first condition?
Michele_Laino
  • Michele_Laino
do you mean part a) ?
rvc
  • rvc
yep
Michele_Laino
  • Michele_Laino
we have to substitute your data, so we can write this: \[\Large \begin{gathered} 20 = \frac{1}{8}\left( {\frac{{{v^4}}}{4} + \frac{{{v^2}}}{2}} \right) \hfill \\ \hfill \\ 20 = \frac{1}{8}\left( {\frac{{{v^4} + 2{v^2}}}{4}} \right) \hfill \\ \hfill \\ 640 = {v^4} + 2{v^2} \hfill \\ \hfill \\ {v^4} + 2{v^2} - 640 = 0 \hfill \\ \end{gathered} \]
Michele_Laino
  • Michele_Laino
now, we can make this change of variable: w=v^2, so we get: \[\Large {w^2} + 2w - 640 = 0\]
rvc
  • rvc
wait 8 X 20 = 160
rvc
  • rvc
oh okayyy
Michele_Laino
  • Michele_Laino
now, we have to solve with respect to w, and we have to pick the positive solution of w, since we have to remember that w=v^2
Michele_Laino
  • Michele_Laino
I got this: \[\Large w = {v^2} = - 1 + \sqrt {640} \cong - 1 + 25.3 = 24.3\]
Michele_Laino
  • Michele_Laino
and hence: \[\Large v = \sqrt {24.3} \cong 5.03\] I write the positive solution only for v, since I believe that v is the magnitude of the velocity of our particle
rvc
  • rvc
i read every step i understand
Michele_Laino
  • Michele_Laino
ok! :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.