The sum of angle 1 and angle 4 and the sum of angle 3 and angle 4 are each equal to 180 degrees by the definition of supplementary angles. The sum of angle 1 and angle 4 is equal to the sum of angle 3 and angle 4 _________________. Angle 1 is equal to angle 3 by the subtraction property of equality Which phrase completes the proof? by construction using a straightedge by the definition of a perpendicular bisector by the transitive property of equality. by the vertical angles theorem

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

The sum of angle 1 and angle 4 and the sum of angle 3 and angle 4 are each equal to 180 degrees by the definition of supplementary angles. The sum of angle 1 and angle 4 is equal to the sum of angle 3 and angle 4 _________________. Angle 1 is equal to angle 3 by the subtraction property of equality Which phrase completes the proof? by construction using a straightedge by the definition of a perpendicular bisector by the transitive property of equality. by the vertical angles theorem

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

someone help please

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

transitive property of equality
@Mehek14 thx can you help me on 1 more please
sure
Geoffrey wrote the following paragraph proof showing that rectangles are parallelograms with congruent diagonals. According to the given information, quadrilateral RECT is a rectangle. By the definition of a rectangle, all four angles measure 90°. Segment ER is parallel to segment CT and segment EC is parallel to segment RT by the Converse of the Same-Side Interior Angles Theorem. Quadrilateral RECT is then a parallelogram by definition of a parallelogram. Now, construct diagonals ET and CR. Because RECT is a parallelogram, opposite sides are congruent. Therefore, one can say that segment ER is congruent to segment CT. Segment TR is congruent to itself by the Reflexive Property of Equality. The _______________ says triangle ERT is congruent to triangle CTR. And because corresponding parts of congruent triangles are congruent (CPCTC), diagonals ET and CR are congruent. Which of the following completes the proof? Angle-Side-Angle (ASA) Theorem Hypotenuse-Leg (HL) Theorem Side-Angle-Side (SAS) Theorem Side-Side-Side (SSS) Theorem
@Mehek14 do you need the picture
yes
how do i post a pic @Mehek14
attach file
1 Attachment
boom
SAS
k thx
your welcome
@Mehek14 just curious have you taken flvs geometry
I'm taking segment 2
who is your teacher just curious
Mr.Heinkel
ohh we have different teachers
@Mehek14 have you done 03.09 Module Three Exam Part Two

Not the answer you are looking for?

Search for more explanations.

Ask your own question