simplify radical -25

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

simplify radical -25

Algebra
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

|dw:1437498244836:dw|
\[\huge\rm \sqrt{-25}\] factor out -1 \[\huge\rm \sqrt{-25} = \sqrt{-1} \times \sqrt{25}\] and combine like terms 't the denominator

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

What does \[\sqrt{-25}\] simplify into? Hint: 25 is a perfect square.
5
and \[\sqrt{-1} = ???\]
idek
\[i = \sqrt{-1}\] \[i^2 = -1\]
so now what
√-1=i
|dw:1437498682455:dw| now combine like terms (5-2i) +( 1-3i)
5i
so you can replace sqrt of -1 by i
so what would the answer be?
√25 simplifies to 5 and √-1 simplifies to i and they multiply to make 5i
got that?
that's what you should find ot
|dw:1437498844568:dw|
i got 5+20i/17
its 5i
T^T
and how did you get that ?
√25 simplifies to 5 and √-1 simplifies to i and they multiply to make 5i
\(\color{blue}{\text{Originally Posted by}}\) @LorenaHue43 i got 5+20i/17 \(\color{blue}{\text{End of Quote}}\) \(\color{blue}{\text{Originally Posted by}}\) @Nnesha and how did you get that ? \(\color{blue}{\text{End of Quote}}\)
*sighs* I jusy guessed bc i have no idea what to do
I got 5i/(6-5i)
\[\huge\rm (5-2i)+(6-3i)\] combine like terms
no it is (1-3i)
alright now multiply denominator and numerator by the conjugate of (6-5i)
\[\huge\rm (5-2i)+(1-3i)\] sorry abt that
30i-25i^2
yep numerator is 30i-25i^2 so i^2 = -1 replace i^2 by -1
and what about the denominator ?
and btw what's the conjugate of 6-5i ?
36-60i-25i2
6+5i is the conjugate
i have no idea how u got that ?
yes right \[\huge\rm \frac{ 5i(6+5i) }{ 6-5i(6+5i) }\] 5i times 5i = ?
25i2
61
yes right so \[\huge\rm \frac{ 30i + 25i^2 }{ 61 }\]
replace i^2 by -1 and done!
soo -25+30i/61
remember \[i =\sqrt{-1}\] i^2 = -1
yes right
Can I ask one more please? I have the answer this time lol:D
who gave u the answer ?
I solved it..
alright.
|dw:1437499746192:dw|
simplify that please. I got 2/6-5/5 (idek where the radical sign is)
what are factors of 24 ,45 and 20 ?
24=4,6 45=9,5 20=4,5
yes right |dw:1437499992200:dw| 4,9 ,4 are perfect square root
So then I was right?
multiply |dw:1437500190222:dw| multiply those numbers and there are common sqrt{5} so you can combine last two terms
what did you get ? sorry i was afk
|dw:1437500682025:dw|
did you use calculator ?
no,
alright that's right but next time DON'T forget to post ur work thanks
:) Thank you!
I have one more to ask. I really don't understand
make a new post
will do
\(\dfrac{\sqrt {-25}} {(5 - 2i) + (1 - 3i)} \) \(= \dfrac{\sqrt {-1} \sqrt{25}} {5 - 2i + 1 - 3i} \) \(= \dfrac{i \times 5} {6 - 5i} \) \(= \dfrac{5i} {6 - 5i} \times \dfrac{6 + 5i}{6 + 5i}\) \(= \dfrac{5i (6 + 5i)} {(6 - 5i)(6 + 5i)} \) \(=\dfrac{30i + 25i^2}{6^2 - (5i)^2} \) \(= \dfrac{30i + 25(-1)}{36 - 25(-1)} \) \(=\dfrac{-25 + 30i}{36 + 25} \) \(=\dfrac{-25 + 30i}{61} \) \(= -\dfrac{25}{61} + \dfrac{30}{61}i \)
|dw:1437501142771:dw|

Not the answer you are looking for?

Search for more explanations.

Ask your own question