• anonymous
Two walls of a canyon form the sides of a steady flowing river. From a point on the shorter wall, the angle of elevation to the top of the opposing wall is 20° and the angle of depression to the bottom of the opposing wall is 45°. From the same point, the diagonal distance to the bottom of the opposing wall is 230 feet. Using the appropriate right triangle solving strategies, solve for: 1. the height of the short wall (x) 2. the height of the tall wall (y) 3. the distance between the canyon walls (z)
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • chestercat
I got my questions answered at in under 10 minutes. Go to now for free help!
  • Jacob902
because of the 45º angle , the height of the short wall and the distance between the walls is the same 1. x = 230' / cos(45º) 2. y = x + [z * tan(20º)] 3. z = x
  • anonymous
i tried that it was wrong
  • dumbcow
is there any more info given? i dont see how it is possible to find height of shorter wall (x) because all info is relative to the fixed point on the shorter wall.

Looking for something else?

Not the answer you are looking for? Search for more explanations.