anonymous
  • anonymous
: Double integral(3sin(9x^2 81y^2))dA where R is the region in the first quadrant bounded by the ellipse 9x^2 81y^2=1
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
there is plus sign in between 9x^2 and 81y^2
Jacob902
  • Jacob902
Try the change of variables x = 1/3rcos(w), y = 1/2rsin(w). In terms of the (r,w) variables the region R is just r = 1, w = 0 to pi/2 (first quadrant) since 9x^2 + 4y^2 = r^2. The double integral in terms of (r,w) becomes int_{w=0}^{w=pi/2}_{r=0}^{r=1} sin(r^2) J([x,y],[r,w]) dr dw where J([x,y],[r,w]) is the determinant of the 2 x 2 Jacobian matrix partial dx/partial dr partial dx/partial dw partial dy/partial dr partial dy/partial dw which here is 1/3cos(w) -1/3rsin(w) 1/2sin(w) 1/2rcos(w) so the determinant J([x,y], [r,w]) is 1/6r(cos^2(w) + sin^2(w)) = 1/6r. The integral becomes 1/6 int_{w=0}^{w=pi/2}_{r=0}^{r=1} sin(r^2) r dr dw = 1/6 [w]_{w=0}^{w=pi/2} [-1/2cos(r^2)]_{r=0}^{r=1} = -1/12[pi/2-0][cos(1) - cos(0)] = 1/12(pi/2)(1 - cos(1) = pi/24*(1 - cos(1)).
anonymous
  • anonymous
how did you type that so fast? haah but thanks

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
so is pi/24(1-cos(1)) the final answer?

Looking for something else?

Not the answer you are looking for? Search for more explanations.