anonymous
  • anonymous
Use cylindrical coordinates. Find the mass and center of mass of the S solid bounded by the paraboloid z = 6x2 + 6y2 and the plane z = a (a > 0) if S has constant density K
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
|dw:1437526358528:dw|
anonymous
  • anonymous
We want the intersection of z = 6x^2 + 6y^2 z = a a = 6x^2 + 6y^2 a/6 = x^2 + y^2 [√(a/6) ] ^2 = x^2 + y^2 the region E is 0 <= r <= sqrt( a/6) 0 <= theta <= 2π 6r^2 <= z <= a
anonymous
  • anonymous
The mass of the solid is \[ \large M = \iiint_E K dV = \int_{0}^{2 \pi} \int_{0}^{\sqrt{a/6}}\int_{6r^2}^{a} Kr~ dz ~ dr ~ d\theta = \frac{Ka^2\pi}{12}\] The moment about the xy plane is \[ \large M_{xy} = \iiint_E zK dV = \int_{0}^{2 \pi} \int_{0}^{\sqrt{a/6}}\int_{6r^2}^{a} Kz~r~ dz ~ dr ~ d\theta = \frac{ Ka^3\pi}{18}\] Similarly the moments about the xz plane and the yz plane are \(\Large M_{xz} = 0 \\\Large M_{yz} = 0 \) The center of mass coordinates are \(\Large ( 0, 0, M_{xy}/M) = (0,0, \frac 2 3 a ) \)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
i love you

Looking for something else?

Not the answer you are looking for? Search for more explanations.