Did I choose the right answer?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Did I choose the right answer?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

incorrect change the radicals to fractional exponents combine exponents by adding/subtracting
why not just solve it? see what you get

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\[\frac{5^{1/3} 5^{1/2}}{5^{5/3}} = \frac{5^{1/3 + 1/2}}{5^{5/3}} = 5^{(1/3)+(1/2) -(5/3)}\]
How did you get that 1/2?
as dumbcow pointed out, \(\large { a^{\frac{{\color{blue} n}}{{\color{red} m}}} \implies \sqrt[{\color{red} m}]{a^{\color{blue} n}} \qquad \qquad \sqrt[{\color{red} m}]{a^{\color{blue} n}}\implies a^{\frac{{\color{blue} n}}{{\color{red} m}}} }\)
I get that and I did do that on my paper except why is there a 5 1/2 ? when all there is a is a radical 5
hmmm those are meant to be exponents
\[\sqrt{a} = \sqrt[2]{a} = a^{1/2}\] for square roots the "2" is left out
Is there always a 2 when there is nothing written?
yes
yap
Oh that clears it up real nice then
Well than you very much to both of you :) I wish I could give a medal to both of you, but I'll give one to the one with less medals Thanks again!

Not the answer you are looking for?

Search for more explanations.

Ask your own question