anonymous
  • anonymous
During a research experiment, it was found that the number of bacteria in a culture grew at a rate proportional to its size. At 8:00AM there were 2,000 bacteria present in the culture. At noon, the number of bacteria grew 3,100. How many bacteria will there be at midnight?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Use P(t)=P_0^e(kt) formula
Michele_Laino
  • Michele_Laino
we can set 8:00 am as t=0, so we can write: \[P\left( 0 \right) = 2000\]
Michele_Laino
  • Michele_Laino
no, at noon, namely t=4 hours, we get: \[\Large 3100 = 2000 \times {e^{k4}}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
so we have: \[\Large {e^{4k}} = \frac{{3100}}{{2000}} = 1.55\]
Michele_Laino
  • Michele_Laino
now, at midnight, namely at t= 16 hours, we have: \[\Large P\left( {16} \right) = 2000 \times {e^{k16}} = 2000 \times {\left( {{e^{4k}}} \right)^4} = ...\]
Michele_Laino
  • Michele_Laino
hint: \[\Large \begin{gathered} P\left( {16} \right) = 2000 \times {e^{k16}} = 2000 \times {\left( {{e^{4k}}} \right)^4} = \hfill \\ \hfill \\ = 2000 \times {\left( {1.55} \right)^4} = ...? \hfill \\ \end{gathered} \]
anonymous
  • anonymous
oh--thank you!
Michele_Laino
  • Michele_Laino
:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.