IS ANYOME GOOD AT FINDING DERIATIVES FOR LN?! Please I need help as soon as possible! :(

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

IS ANYOME GOOD AT FINDING DERIATIVES FOR LN?! Please I need help as soon as possible! :(

Calculus1
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

post it up
Ok
y=ln(1-x/(x+2)^5)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\[y=\ln [1 -\frac{ x }{(x+2)^{5}}]\] Is that it?
No sorry my computer is messed up, the 1-x is the numerator, and the denominator is as you out it. Ln is correct too
Put*
\(\large y=ln \frac{1-x}{(x+2)^5} \) assuming that you know that \(\large (log \ u(x))' = \frac{1}{u} u'\) then look also at \(\large ln \frac{a}{b} = ln \ a - ln \ b\) and similar properties of logs; and maybe split this up a bit before you start...
yeah, thanks Irish Boy. I reckon do the properties of logs.... Ln(1-x) - Ln(x+2)^5 = Ln(1-x) - 5Ln(x+2) the rest is easy because the derivative of Lnx is 1/x
@alekos look good

Not the answer you are looking for?

Search for more explanations.

Ask your own question