anonymous
  • anonymous
Describe how to transform the quantity of the sixth root of x to the fifth power, to the seventh powerinto an expression with a rational exponent. Make sure you respond with complete sentences.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@pooja195
anonymous
  • anonymous
@Hero
campbell_st
  • campbell_st
so you have \[(\sqrt[6]{x^5})^7\] is that correct...?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
yessum
campbell_st
  • campbell_st
ok do you know how to write fractional roots for radicals..?
campbell_st
  • campbell_st
\[\sqrt[a]{x^b} = x^{\frac{b}{a}}\]
campbell_st
  • campbell_st
use that law to start then you need the index law for power of a power.... multiply the powers \[(x^a)^b = x^{a \times b}\]
anonymous
  • anonymous
okay (so x^5/6)^7
campbell_st
  • campbell_st
great so now multiply 5/6 by 7 and that will be the power
anonymous
  • anonymous
so 35/6?
anonymous
  • anonymous
@campbell_st

Looking for something else?

Not the answer you are looking for? Search for more explanations.