anonymous
  • anonymous
using these three coordinates write an equation for the parabola in these forms
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
|dw:1437628694097:dw|
anonymous
  • anonymous
You know the parabola goes through those 3 points, so those points are solutions for the parabola, being a solution means that replacing the point will make the equation right (or true). For your first expression 1. Point (0,0) \[0=a(0-r_1)(0-r_2 ) / x=0 , y=0 \] \[0=ar_1 r_2.............(I)\] 2. Point (20,12) \[12=a(20-r_1)(20-r_2)=400a-20ar_2 -20ar_1+ar_1r_2\] But you know from (I) that ar1r2=0 \[12=400a-20ar_2 -20ar_1.........(II)\] 3. Point (40,0) \[0=a(40-r_1)(40-r_2)=1600a-40ar_2 -40ar_1+ar_1r_2\] And again we know from (I) that ar1r2=0 \[0=1600a-40ar_2 -40ar_1\] dividing by 2 \[0=800a-20ar_2 -20ar_1........(III)\] Now solving the equation system (II) and (III) \[12=400a-20ar_2 -20ar_1.........(II)\] \[0=800a-20ar_2 -20ar_1........(III)\] we get a=-0.03, we also know for (I) that one of r1 & r2 should be 0, we pick one randomly and replacing a and r1=0 in (II) or (III) gives us the value of r2=40 So your first expression should be \[y=-0.03(x)(x-40)\] Now do the same for your second expression
triciaal
  • triciaal
|dw:1437645525075:dw| parabola opens down a is negative vertex (20,12) line of symmetry x = 20 focus at (20, 6)

Looking for something else?

Not the answer you are looking for? Search for more explanations.