anonymous
  • anonymous
Find dy/dx of x cos(y) = 1 at the point (-1,pi) using implicit differentiation
Calculus1
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
I know that I need to use the product rule. My question is, do I keep the x as it is or do I need to replace it with -1?
anonymous
  • anonymous
\[\frac{ d }{ dx }\left( x \cos y \right) = \frac{ d }{ dx } (1)\] \[\frac{ d }{ dx }(x) \cos y + x \frac{ d }{ dx }\left( \cos y \right)=0\] \[\cos y - x \sin y \frac{ dy }{ dx }=0\] \[\frac{ 1 }{ x }\cot y =\frac{ dy }{ dx }\] And if we replace x=-1 and y=pi we see that dy/dx doesn't exist for (-1,pi)
anonymous
  • anonymous
Thanks this makes sense. But I did it totally different on a test which now doesn't make any sense, and still got it right. I posted in the mathematics section how I did it.

Looking for something else?

Not the answer you are looking for? Search for more explanations.