elleblythe
  • elleblythe
How to find the derivative of cos(x/y)-e^x^2=sqt(y)+log5base7
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
phi
  • phi
is it \[ \cos\left(\frac{x}{y} \right) - e^{x^2} = \sqrt{y + \log_7 5} \] ?
Astrophysics
  • Astrophysics
\[\cos \left( \frac{ x }{ y } \right)\] requires chain and quotient rule
Astrophysics
  • Astrophysics
\[\frac{ d }{ dx } \cos\left( \frac{ x }{ y } \right) = -\sin \left( \frac{ x }{ y } \right) \times \left( \frac{ x }{ y } \right)'\] and I think the rest should be pretty simple mhm, I would like to see an attempt.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Astrophysics
  • Astrophysics
Also this may come in handy \[\frac{ d }{ dx } \log_a x = \frac{ 1 }{ x \ln a }\]
elleblythe
  • elleblythe
@phi only the y is under the radical
IrishBoy123
  • IrishBoy123
so that's : \(\large cos (\frac{x}{y})-e^{x{^2}} = \sqrt{y} + log_75 \) which is now a wee bit easier as the constant at the end goes to zero. so now take it from @Astrophysics steer \(\large \frac{d}{dx} cos(\frac{x}{y})=−sin(\frac{x}{y}) .\frac{d}{dx}(\frac{x}{y})\)
phi
  • phi
**only the y is under the radical*** ok, that is what you posted. But that means the last term (though it looks ugly) is just a constant, and when you take the derivative, it "goes away"
phi
  • phi
You should use "implicit differentiation" on this problem if you need a refresher, try https://www.khanacademy.org/math/differential-calculus/taking-derivatives/implicit_differentiation

Looking for something else?

Not the answer you are looking for? Search for more explanations.