What are the factors of x2 - 81? (x + 9)(x - 9) (x - 9)(x - 9) (x + 3)(x - 27) Prime

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

What are the factors of x2 - 81? (x + 9)(x - 9) (x - 9)(x - 9) (x + 3)(x - 27) Prime

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

difference of square s \[\huge\rm a^2 - b^2 = (a+b)(a-b)\]
Diffrence of squares \[\huge~\rm~\sqrt{ x^2}=\sqrt{81}\]
take square root of both term write your answer in two parenthses (sqrt of first term + sqrt of 2nd term )( sqrt of first term - sqt of 2nd term )

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

You can use foil here & just work backwards aswell, so looking at answer choice #1, (x+9)(x-9) "F" first: X * X = X^2 "O" outside: X * 9 = 9x "I" inside: -9 * X = -9x "L" last: 9 * (-9) = -81 So you have: x^2 + 9x - 9x -81 Now simplify: x^2 -81 Thats how i solved my equations in school. hope it helps :)
help plz @Mehek14
what do you think is the answer?
B?
no -9 * -9 = +81 not -81
it would be (x + 9)(x - 9)
because x*x = \(x^2\) \(9x+-9x=0\\9*-9=-81\\x^2+0-81\\x^2-81\)
oh ok i think i get it now

Not the answer you are looking for?

Search for more explanations.

Ask your own question