anonymous
  • anonymous
What is the slope of the line (-3,-2) and (3,-1)?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Michele_Laino
  • Michele_Laino
the requested slope m is given by the subsequent formula: \[m = \frac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\]
anonymous
  • anonymous
I'm really bad with negatives and positives need major help I know the damn formula tho.
Michele_Laino
  • Michele_Laino
where (x1, y1)=(-3,-2) and (x2,y2)=3,-1)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
hint: after a substitution, we get: \[\Large m = \frac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}} = \frac{{ - 1 - \left( { - 2} \right)}}{{3 - \left( { - 3} \right)}} = ...?\]
anonymous
  • anonymous
-1/-6= 1/6?!
Michele_Laino
  • Michele_Laino
that's right!
anonymous
  • anonymous
Thank you <3
anonymous
  • anonymous
For (-2,3) and (1,-3) would it be 0/-3=0 ?!
anonymous
  • anonymous
@Michele_Laino
anonymous
  • anonymous
Yup and I got 0/-3 which is 0
Michele_Laino
  • Michele_Laino
hint: we have: x1=-2, y1=3 x2=1, y2=-3 so we can write: \[\Large m = \frac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}} = \frac{{ - 3 - 3}}{{1 - \left( { - 2} \right)}} = ...?\]
anonymous
  • anonymous
Ughhh it wasn't right
anonymous
  • anonymous
-2 ?!
Michele_Laino
  • Michele_Laino
we know the exact result at least: m=-2 that's right!!
anonymous
  • anonymous
Thank you 😄😄
Michele_Laino
  • Michele_Laino
:)
anonymous
  • anonymous
(-3,2) and (1,2) I got 0/3=0 :/
anonymous
  • anonymous
@Michele_Laino

Looking for something else?

Not the answer you are looking for? Search for more explanations.