anonymous
  • anonymous
Find the standard form of the equation of the parabola with a focus at (0, -10) and a directrix at y = 10. How would I solve this?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ganeshie8
  • ganeshie8
Notice that the vertex is \((0,0)\) here because it is the midpoint between focus and directrix line. Since the focus is below the directrix line, the parabola faces downwards : \[y = -\frac{1}{4a}x^2\]
anonymous
  • anonymous
y=-(1/40)x^2?
ganeshie8
  • ganeshie8
where \(a\) is the distance between "focus" and "vertex" |dw:1437708887336:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
20?
ganeshie8
  • ganeshie8
|dw:1437709113428:dw|
ganeshie8
  • ganeshie8
y=-(1/40)x^2? is correct
anonymous
  • anonymous
Thank you very much!
ganeshie8
  • ganeshie8
yw

Looking for something else?

Not the answer you are looking for? Search for more explanations.