ganeshie8
  • ganeshie8
Find the matrix for linear transformation \(T : \mathbb{P}_n \to \mathbb{P}_n\), \[T f(x) =f(x) -2f'(x)+3f''(x)\]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ganeshie8
  • ganeshie8
\(\mathbb{P}_n\) is the set of polynomials of degree not greater than \(n\)
amoodarya
  • amoodarya
\[f(x)=a_0=a_1x+a_2x^2+...a_nx^n=\\\begin{bmatrix} a_0 &a_1 &a_2 &... &a_n \end{bmatrix} \begin{bmatrix} 1\\ x\\ x^2\\ x^3\\ ...\\ x^n \end{bmatrix}\\f'=0+a_1 +2a_2x+3a_3x^2+...=\\\begin{bmatrix} a_0 &a_1 &a_2 &... &a_n \end{bmatrix} \begin{bmatrix} 0\\ 1\\ 2x\\ 3x^2\\ ...\\n x^n-1 \end{bmatrix}\]
amoodarya
  • amoodarya
\[f''=0+0+2a_2+6a_3x+12a_4x^2+...=\\\begin{bmatrix} a_0 &a_1 &a_2 &... &a_n \end{bmatrix} \begin{bmatrix} 0\\ 0\\ 2\\ 6x\\12x^2\\ ...\\n(n-1)x^{n-2} \end{bmatrix}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amoodarya
  • amoodarya
almost solved!
ganeshie8
  • ganeshie8
how do we get the transformation matrix ?
ganeshie8
  • ganeshie8
doing \(f(x) -2f'(x)+3f''(x)\) gives a vector, not matrix right ?
amoodarya
  • amoodarya
for f\[\begin{bmatrix} 1\\ x\\ x^2\\ x^3\\ x^4\\ x^5\\ ... \end{bmatrix}\] for f'\[\begin{bmatrix} 0\\ 1\\ 2x\\ 3 x^2\\ ... \end{bmatrix}\] for f'' \[\begin{bmatrix} 0\\0\\2\\ 6x\\ 12 x^2\\ ... \end{bmatrix}\] find f-2f'+3f'' vector and multiply by \[\begin{bmatrix} a_0 &a_1 &a_2 &... &a_n \end{bmatrix}\] it gives you matrix
ganeshie8
  • ganeshie8
hmm \(f-2f'+3f'\)' gives \(n+1\) x \(1\) vector premultiplying \(\begin{bmatrix} a_0 &a_1 &a_2 &... &a_n \end{bmatrix}\) gives 1x1 matrix (scalar)
amoodarya
  • amoodarya
this the way to wirte matrix form \[\begin{bmatrix} 0\\ 1\\ 2x\\ 3x^2\\... \end{bmatrix}=\begin{bmatrix} 0 &0 &0 &0 &... \\ 1&0 &0 &0 &... \\ 0&2 &0 &0 &... \\ 0&0 &3 &0 &... \\ 0 &0 &0 &4 &... \end{bmatrix}\begin{bmatrix} 1\\ x\\ x^2\\ x^3\\ x^4\\ ... \end{bmatrix}\]
amoodarya
  • amoodarya
that was f' we do like this for f'' then you have sum of some matrix to find the transformation
ganeshie8
  • ganeshie8
I think that should work because now the vector has correct exponents ordering
imqwerty
  • imqwerty
'.'
ganeshie8
  • ganeshie8
matrix for \(Tf(x)=f(x)\) is \[\begin{bmatrix} 1&0&0&0&\cdots&0&0\\ 0&1&0&0&\cdots&0&0\\ 0&0&1&0&\cdots&0&0\\ 0&0&0&1&\cdots&0&0\\ \vdots&\vdots&\vdots&\vdots&\ddots&0&0\\ 0&0&0&0&\cdots&1&0\\ 0&0&0&0&\cdots&0&1\\ \end{bmatrix}\] matrix for \(Tf(x)=f'(x)\) is \[\begin{bmatrix} 0&1&0&0&\cdots&0&0\\ 0&0&2&0&\cdots&0&0\\ 0&0&0&3&\cdots&0&0\\ 0&0&0&0&\cdots&0&0\\ \vdots&\vdots&\vdots&\vdots&\ddots&n-1&0\\ 0&0&0&0&\cdots&0&n\\ 0&0&0&0&\cdots&0&0\\ \end{bmatrix}\] matrix for \(Tf(x)=f''(x)\) is \[\begin{bmatrix} 0&0&2\cdot 1&0&\cdots&0&0\\ 0&0&0&3\cdot 2 &\cdots&0&0\\ 0&0&0&0&\cdots&0&0\\ 0&0&0&0&\cdots&(n-1)(n-2)&0\\ \vdots&\vdots&\vdots&\vdots&\ddots&0&n(n-1)\\ 0&0&0&0&\cdots&0&0\\ 0&0&0&0&\cdots&0&0\\ \end{bmatrix}\]
ganeshie8
  • ganeshie8
i don't really see a more simpler way to express the final matrix hmm
ganeshie8
  • ganeshie8
for the overall transformation, I think il end up with matrix for \(Tf(x)=f(x)\color{blue}{-2\cdot}f'(x)+\color{red}{3\cdot }f''(x)\) is \[\begin{bmatrix} 1&\color{blue}{-2\cdot}1&\color{red}{3\cdot }2\cdot 1&0&\cdots&0&0\\ 0&1&\color{blue}{-2\cdot}2&\color{red}{3\cdot }3\cdot 2 &\cdots&0&0\\ 0&0&1&\color{blue}{-2\cdot}3&\cdots&0&0\\ 0&0&0&1&\cdots&\color{red}{3\cdot }(n-1)(n-2)&0\\ \vdots&\vdots&\vdots&\vdots&\ddots&\color{blue}{-2\cdot}(n-1)&\color{red}{3\cdot }n(n-1)\\ 0&0&0&0&\cdots&1&\color{blue}{-2\cdot}n\\ 0&0&0&0&\cdots&0&1\\ \end{bmatrix}\]
Empty
  • Empty
You can represent the entries of the derivative matrix using the Kronecker delta and the binomial coefficients by starting at the top left entry being indexed with 0,0 instead of 1,1 (which is more natural because \(x^0\) is also the first entry of the vector multiplying it, not \(x^1\) ): \[\Large D_{nm}^{(k)} = \delta_{n,(m-k)} \binom{n+k}{n} \] So for instance, k=0 corresponds to the identity matrix, \[\Large D_{nm}^{(0)} = \delta_{nm} \] Or let's look at this entry on the second derivative which represents the map from \(x^4\) to \(12 x^2\): \[\Large D_{24}^{(2)} = \delta_{22} \binom{4}{2} =12\] Cool, also I found this other matrix the other day too that might be related through the Taylor series since it represents shifting the function f(x) to f(x+a), that is if f(x) can be represented by the same vector you're using. Part of A for just \(f(x)= px^2+qx+r\) $$A= \begin{bmatrix} 1 & a & a^2 \\ 0 & 1 & 2a \\ 0 & 0 & 1 \end{bmatrix}$$ $$A_{ij}=\binom{i}{j}a^{j-i}$$ anywho I thought you might think this is interesting.
Empty
  • Empty
So using this matrix D I put we can write: \[Ty = y-2y'+3y''\]\[Ty=D^{(0)}y-2D^{(1)}y +3D^{(2)}y\]\[T=I-2D^{(1)}+3D^{(2)}\] So I guess that's one way to write T down, I don't know if that's quite what you like or not but I think it's a little better.
anonymous
  • anonymous
wow this has yo be some really advanced math
anonymous
  • anonymous
to*
ganeshie8
  • ganeshie8
That looks neat, pretty sure you meant \[\Large D_{nm}^{(k)} = \delta_{n,(m-k)} \binom{n+k}{n}\color{red}{k!}\]
ganeshie8
  • ganeshie8
\[Ty = y-2y'+3y''\]\[Ty=D^{(0)}y-2D^{(1)}y +3D^{(2)}y\]\[T=I-2D^{(1)}+3D^{(2)}\] This is indeed compact, was just wondering if we can do any operations with the kronecker delta symbol and maybe further simplify or something..
Empty
  • Empty
Ahhh yeah I somehow left that out haha, oh well you got it. As it stands, I don't think there's a whole lot more we can do. Each one of those D matrices is going to be its own separate band at least, so together it will form one fairly predictable banded matrix.
Empty
  • Empty
Something kind of interesting I'm seeing is, each of these D matrices are linearly independent of each other and all these D matrices form a vector space.

Looking for something else?

Not the answer you are looking for? Search for more explanations.