Michele_Laino
  • Michele_Laino
A "Mechanics" challenge
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Michele_Laino
  • Michele_Laino
Let's suppose a colllision between a neutron which is moving with a velocity V1, and a nucleus at rest. The unit of measure of the masses is the nucleon mass, so the neutron has mass equal to 1, whereas the mass of the nucleus is A, where A is the mass number of that nucleus. 1) find the velocity of the center of mass of the system neutron-nucleus 2) show that with respect to the center of mass, the total momentum of the system nucleus-neutron is the null vector @IrishBoy123 @Empty @Astrophysics
Michele_Laino
  • Michele_Laino
|dw:1437757810812:dw|
Michele_Laino
  • Michele_Laino
hint: the velocity of the center of mass of a system composed by N particles, whose mass are m_i and velocities are v_i, is given by the subsequent fromula: \[\Large {{\mathbf{v}}_{CM}} = \frac{{\sum\limits_1^N {{m_i}{{\mathbf{v}}_i}} }}{{\sum\limits_1^N {{m_i}} }}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

IrishBoy123
  • IrishBoy123
*first* bit: |dw:1437768326539:dw| \(\huge \vec v_{cm}=\frac {∑^N_i \ m_i \vec v_i}{∑^N_1 \ m_i}\) conservation of momentum: \(\large \vec v_1 = \vec v_2 + A \vec v_f \) \(\huge \vec v_{cm}=\frac { \vec v_2 + A \vec v_f }{A + 1} = \frac {\vec v_1 }{A + 1}\) if that's totally off beam, pls advise.
anonymous
  • anonymous
Using conservation of momentum,\[m _{neutron}v _{1} + m _{nucleus}v _{nucleus} = m _{neutron}v _{1}^{'} + m _{nucleus}v _{nucleus}^{'}\]\[\left( 1 \right) v _{1} + A \left( 0 \right)= \left( 1 \right)v{'} + A \left( v^{'} \right)\]\[v^{'} = \frac{ v_1 }{ A+1 }\]I do not understand part 2. The system has non-zero momentum before the collision and exactly the same momentum after the collision. How can it be zero?
IrishBoy123
  • IrishBoy123
for second part using conservation of energy: \(\vec v_1 ^2 = \vec v_2^2 + A \vec v_f^2\) \((\vec v_1 - \vec v_2)\bullet (\vec v_1 + \vec v_2) = A (\vec v_f \bullet \vec v_f)\) from conservation momentum above: \(\vec v⃗_1-v⃗_2=A v⃗_f\) [A] \(A v⃗_f \bullet (\vec v_1 + \vec v_2) = A \vec v_f \bullet \vec v_f\) \(\vec v_1 + \vec v_2 = \vec v_f\) [B] [A] and [B] give : \(\large \vec v_f = \frac{2 \vec v_1}{1+A}\) \(\large \vec v_2 = \frac{ \vec v_1 (1-A)}{1+A}\) and these follow also from \( \vec v_{cm}\) in previous post: \(\large \vec v_f - \vec v_{cm} = \frac{ \vec v_1}{1+A}\) \(\large \vec v_2 - \vec v_{cm} = \frac{ -\vec v_1A}{1+A}\) momentum \(\vec p\) of system measured from the reference frame of the centre of mass is: \(\vec p = A (\vec v_f - \vec v_{cm})+ (1)(\vec v_2 - \vec v_{cm} )\\ = A \frac{ \vec v_1}{1+A} + (1) \frac{ -\vec v_1A}{1+A} = \vec 0\)
IrishBoy123
  • IrishBoy123
in order to verify conservation of momentum from reference frame of centre of mass, looking at the "before" picture: \(\large \vec v_{cm_o} =\frac{(1)\vec v_1+A\vec0}{1 + A} = \frac{\vec v_1}{1 + A}\) ie same from reference frame of centre of mass, momentum \(\vec p_o\) was: \(\large \vec p_o = (1) (\vec v_1 - v_{cm_o} ) + A(\vec 0 - v_{cm_o}) \) \(\large \ \ = (1) (\vec v_1 -\frac{\vec v_1}{1+A} ) + A( - \frac{\vec v_1}{1 + A}) = \vec 0\)
Michele_Laino
  • Michele_Laino
nicely done!! :) @IrishBoy123

Looking for something else?

Not the answer you are looking for? Search for more explanations.