anonymous
  • anonymous
cos(x)-sin(x)=sqrt(2)sin(x) prove that cos(x)+sin(x)=sqrt(2)cos(x)
Trigonometry
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
alekos
  • alekos
are you still there?
alekos
  • alekos
@RahulYadav-2000
anonymous
  • anonymous
hey my internet connection is bad that's why it gets disconnected if any body knows the answer pls send it to me

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

alekos
  • alekos
If \[cosx - sinx = \sqrt2 sinx\] then \[(1/\sqrt2) cosx - (1/\sqrt2) sinx = sinx\] and \[\cos \pi/4cosx - \sin \pi/4sinx = sinx\] hence \[\cos (x + \pi/4) = sinx\] so \[\sin(\pi/4 -x) = sinx\] and this leads to \[x=\pi/4\]
alekos
  • alekos
sorry it leads to \[x=\pi/8\]
alekos
  • alekos
so in order to prove the second statement just substitute \[x = \pi/8\] to both sides
anonymous
  • anonymous
1.f(x)= log(\[\sqrt{x ^{2}+1}\]-x) 2.f(x)= xlog(\[x+\sqrt{x ^{2} +1}\]) find which is odd and which is even

Looking for something else?

Not the answer you are looking for? Search for more explanations.