.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

please explain too.
take any point on the parabola (x0,y0) then the distance between this point and the focus is given by sqrt[(x0 - 2)^2 + (y0 - 0)^2 and distance of the point from the directrix = 12
- sorry that distance from directrix is |y0 - 12|

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

so as the distance from the focus = distance from the directrix ( definition of a parabola) we have sqrt[(x0 - 2)^2 + (y0 - 0)^2 = (0 -12) simplify this to get the required equation
sorry - another typo its sqrt[(x - 2)^2 + (y - 0)^2] = (y -12)
- I change x0 and y0 to x and y
squaring both sides (x - 2)^2 + y^2 = (y - 12)^2 x^2 - 4x + 3 + y^2 = y^2 - 24y + 144 can you continue from here?
Could you go all the way please?
gave you best response
x^2 - 4x + 4 + y^2 = y^2 - 24y + 144 x^2 - 4x - 140 = -24y y = (-1/24)x^2 + (1/6)x - 35/6 = 0
thanks.
I'm making a lot of typos today so I cant guarantee the answer but the method is right!
yeah its an answer could you help me with one more
no sorry gtg right now
I'm still not happy with that result
what result?
AH! the distance for directrix is |x - (-12)| = |x + 12| so we have (x - 2)^2 + y^2 = y^2 + 24x + 144 x^2 - 4x + 4 + y^2 = y^2 + 24y + 144 x^2 - 4x - 144 + 4 = 24x y = (1/24)x^2 - (1/6)x - 144/24 = 0 y = (1/24)x^2 - (1/6)x - 35/6 = 0 is the correct answer
the only problem with that is its not one of the options but I'm sure its correct
I'll check with wolfram alpha
lol wolfram
http://www.wolframalpha.com/input/?i=equation+of+a+parabola+with+focus+%282%2C0%29+and+directrix+y+%3D+-12 there you go its correct
okay
so there must be a typo in one of the choices looks like its C - which has 2 plus instead 2 negatives

Not the answer you are looking for?

Search for more explanations.

Ask your own question