mathmath333
  • mathmath333
logarithm question
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
mathmath333
  • mathmath333
\(\large \color{black}{\begin{align} &\text{Prove}\ \\~\\& \log_{0.625} \sqrt{128}=\dfrac{2+\log_{8} 2}{2(\log_{8} 5-1)} \hspace{.33em}\\~\\ \end{align}}\)
mathmath333
  • mathmath333
http://www.wolframalpha.com/input/?i=is+%5Clog_%7B0.625%7D+%5Csqrt%7B128%7D%3D%5Cdfrac%7B2%2B%5Clog_%7B8%7D+2%7D%7B2%28%5Clog_%7B8%7D+5-1%29%7D+%3F
ganeshie8
  • ganeshie8
\[\begin{align} \dfrac{2+\log_{8} 2}{2(\log_{8} 5-1)}&=\dfrac{\log_8 8^2+\log_{8} 2}{2(\log_{8} 5-1)}\\~\\ &=\dfrac{\log_{8} 128}{2(\log_{8} 5-1)}\\~\\ &=\dfrac{\log_{8} \sqrt{128}}{\log_{8} 5-1}\\~\\ &=\cdots \end{align}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

mathmath333
  • mathmath333
how do i solve denominator
mathmath333
  • mathmath333
and base 0.625
IrishBoy123
  • IrishBoy123
inferior solution but what the hell: \(0.625 = \frac{5}{8}\) so you can base shift the LHS into \(log_8\)'s and do it the long way
mathmath333
  • mathmath333
that looks useful.
cwrw238
  • cwrw238
yes that would work change the base of the log so they are all the same
mathmath333
  • mathmath333
ok i got it now
mathmath333
  • mathmath333
thnx
IrishBoy123
  • IrishBoy123
\(\large log_{0.625}\sqrt128 = log_{\frac{5}{8}}\sqrt128 = \frac{log_8\sqrt{128}}{log_8\frac{5}{8}} = \frac{log_8\sqrt{128}}{log_8 5 - 1}\) then some more fiddling about with \(\sqrt128 \) sorry i actually latexed this so i am going to post it ..... even though i think you have killed this off :p good luck!

Looking for something else?

Not the answer you are looking for? Search for more explanations.