The following function defines a recursive sequence: f(0) = -3 f(1) = 6 f(n) = -2•f(n -1) - f(n - 2); for n > 1 Which of the following sequences is defined by this recursive function?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

The following function defines a recursive sequence: f(0) = -3 f(1) = 6 f(n) = -2•f(n -1) - f(n - 2); for n > 1 Which of the following sequences is defined by this recursive function?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

-3, 6, -9, -12, … -3, 20, -95, 480, … -3, 6, -9, 12, … -3, -20, -95, -480, …
I will change my notations to \(a_{n}\) if you don't mind, ok?
um okay i guess

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

But you are given the first two terms \(a_0\) and \(a_1\) so just based on that you can exclude the rest of the options
u have only 2 possible options after doing elimination, right? and they are A and C
\(\large\color{black}{ \displaystyle a_n=-2\cdot \left(a_{n-1}\right) -\left(a_{n-2}\right) }\) \(\large\color{black}{ \displaystyle a_2=-2\cdot \left(a_{2-1}\right) -\left(a_{2-2}\right) }\) \(\large\color{black}{ \displaystyle a_2=-2\cdot \left(a_{1}\right) -\left(a_{0}\right) }\) \(\large\color{black}{ \displaystyle a_2=-2\cdot \left(6\right) -\left(-3\right) }\) \(\large\color{black}{ \displaystyle a_2=-12 +3 }\) \(\large\color{black}{ \displaystyle a_2=-9}\)
then, you can find \(a_3\) using the same formula
so its c?
let me see.... \(\large\color{black}{ \displaystyle a_3=-2\cdot \left(a_{3-1}\right) -\left(a_{3-2}\right) }\) \(\large\color{black}{ \displaystyle a_2=-2\cdot \left(a_{2}\right) -\left(a_{1}\right)=-2\cdot(-9)-(6)=18-6=12 }\)
yes C is right
you can deduce that by logic, that you have a negative term \(a_{n-1}\) (in this case a negative term \(a_{2}\) (which is =-9) |--> so when multiplied times -2 it becomes twice as much and positive. This negative term \(a_2\) has a greater absolute value (or greater magnitude) than \(a_{n-2}\) (and \(a_{n-2}\) in this case is \(a_1\) which is 6) So you are having a case \(a_3=-2\times ({\rm -greater})~-~({\rm smaller})~~~~~~~\Rightarrow~\rm positive\)
okay great thank you so much for your help! : )
and you know that it is 12 and -12, having eliminated every option besides A and C. And since the result (for \(a_2\)) must be positive, therefore it is 12 (not -12), and thus the answer is C.
this is kidnd of an implicit.... yw

Not the answer you are looking for?

Search for more explanations.

Ask your own question