Please help with a pre calc question. I will fan and medal best response.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Please help with a pre calc question. I will fan and medal best response.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

The equation of an ellipse centered at the origin is \[\frac{ x^2 }{ a^2}+\frac{ y^2 }{ b^2 }=1\] We know three points (0, 58), (21, 29), and (-21,29). If you substitute the points you should be able to solve for a and b.
So: ((21^2)/a^2) +((29^2)/b^2) = 1?
not really following you here... sorry
yes that's right. And if you use (0,58) you can eliminate the x² part, which allows you to solve for b
I'm sorry but can you just show me the steps with the information. Once I've done it once, it will make sense but right now I just don't get it.
@Loser66 can you help?
\[\frac{ 0^2 }{ a^2 }+\frac{ 58^2 }{ b^2 }=1\] \[\frac{ 58^2 }{ b^2 }=1\] Now you can solve for b
wouldn't that mean that b=58?
yes.
oh ok. lol so how about finding a
now put 58 into the equation you made above. \[\frac{ 21^2 }{ a^2 }+\frac{ 29^2 }{ 58^2 }=1\]
now I just plug in a different pair of coordinates with b = 58?
ok got it that all i need thanks
you're welcome
@peachpi sorry dude I thought I could get through the rest of the problem by myself but I got stuck can you help me finish it?
@Loser66 can you help me finish the problem?
I got this far: First find b from: (0^2/a^2) + (58^2/b^2) = 1 58^2/b^2 = 1 b = 58 Now find a: (21^2/a^2) + (29^2/58^2) = 1 (21^2/a^2) + 1/4 = 1 (21^2/a^2) = 3/4 or 0.75
@peachpi please finish it. I didn't follow the stuff.
he went offline
|dw:1437955365294:dw|

Not the answer you are looking for?

Search for more explanations.

Ask your own question